deterministic_funcs#
Contains UDFs for deterministic metric calculations in Spark queries.
Functions
Create the annual_peak_relative_bias metric function. |
|
Create the kling_gupta_efficiency metric function. |
|
Create the kling_gupta_efficiency_mod1 metric function. |
|
Create the kling_gupta_efficiency_mod2 metric function. |
|
Create the max_value_delta metric function. |
|
Create the max_value_timedelta metric function. |
|
Create the mean_absolute_error metric function. |
|
Create the Absolute Relative Error metric function. |
|
Create the Mean Error metric function. |
|
Create the mean_squared_error metric function. |
|
Create the Multiplicative Bias metric function. |
|
Create the nash_sutcliffe_efficiency metric function. |
|
Create the nash_sutcliffe_efficiency_normalized metric function. |
|
Create the Pearson Correlation Coefficient metric function. |
|
Create the R-squared metric function. |
|
Create the Relative Bias metric function. |
|
Create the root_mean_squared_error metric function. |
|
Create the root_mean_standard_deviation_ratio metric function. |
|
Create the Spearman metric function. |
- annual_peak_relative_bias(model: MetricsBasemodel) Callable [source]#
Create the annual_peak_relative_bias metric function.
\(Ann\ PF\ Bias=\frac{\sum(ann.\ peak_{sec}-ann.\ peak_{prim})}{\sum(ann.\ peak_{prim})}\)
- kling_gupta_efficiency(model: MetricsBasemodel) Callable [source]#
Create the kling_gupta_efficiency metric function.
\(KGE=1-\sqrt{(r(sec, prim)-1)^2+(\frac{\sigma_{sec}}{\sigma_{prim}}-1)^2+(\frac{\mu_{sec}}{\mu_{sec}/\mu_{prim}}-1)^2}\)
- kling_gupta_efficiency_mod1(model: MetricsBasemodel) Callable [source]#
Create the kling_gupta_efficiency_mod1 metric function.
\(KGE'=1-\sqrt{(r(sec, prim)-1)^2+(\frac{\sigma_{sec}/\mu_{sec}}{\sigma_{prim}/\mu_{prim}}-1)^2+(\frac{\mu_{sec}}{\mu_{sec}/\mu_{prim}}-1)^2}\)
- kling_gupta_efficiency_mod2(model: MetricsBasemodel) Callable [source]#
Create the kling_gupta_efficiency_mod2 metric function.
\(KGE''=1-\sqrt{(r(sec, prim)-1)^2+(\frac{\sigma_{sec}}{\sigma_{prim}}-1)^2+\frac{(\mu_{sec}-\mu_{prim})^2}{\sigma_{prim}^2}}\)
- max_value_delta(model: MetricsBasemodel) Callable [source]#
Create the max_value_delta metric function.
\(mvd=max(value_{sec})-max(value_{prim})\)
- max_value_timedelta(model: MetricsBasemodel) Callable [source]#
Create the max_value_timedelta metric function.
\(mvtd=max\_value\_time_{sec}-max\_value\_time_{prim}\)
- mean_absolute_error(model: MetricsBasemodel) Callable [source]#
Create the mean_absolute_error metric function.
\(MAE=\frac{\sum|sec-prim|}{count}\)
- mean_absolute_relative_error(model: MetricsBasemodel) Callable [source]#
Create the Absolute Relative Error metric function.
\(Relative\ MAE=\frac{\sum|sec-prim|}{\sum(prim)}\)
- mean_error(model: MetricsBasemodel) Callable [source]#
Create the Mean Error metric function.
\(Mean\ Error=\frac{\sum(sec-prim)}{count}\)
- mean_squared_error(model: MetricsBasemodel) Callable [source]#
Create the mean_squared_error metric function.
\(MSE=\frac{\sum(sec-prim)^2}{count}\)
- multiplicative_bias(model: MetricsBasemodel) Callable [source]#
Create the Multiplicative Bias metric function.
\(Mult.\ Bias=\frac{\mu_{sec}}{\mu_{prim}}\)
- nash_sutcliffe_efficiency(model: MetricsBasemodel) Callable [source]#
Create the nash_sutcliffe_efficiency metric function.
\(NSE=1-\frac{\sum(prim-sec)^2}{\sum(prim-\mu_{prim}^2)}\)
- nash_sutcliffe_efficiency_normalized(model: MetricsBasemodel) Callable [source]#
Create the nash_sutcliffe_efficiency_normalized metric function.
\(NNSE=\frac{1}{(2-NSE)}\)
- pearson_correlation(model: MetricsBasemodel) Callable [source]#
Create the Pearson Correlation Coefficient metric function.
\(r=r(sec, prim)\)
- r_squared(model: MetricsBasemodel) Callable [source]#
Create the R-squared metric function.
\(r^2=r(sec, prim)^2\)
- relative_bias(model: MetricsBasemodel) Callable [source]#
Create the Relative Bias metric function.
\(Relative\ Bias=\frac{\sum(sec-prim)}{\sum(prim)}\)
- root_mean_squared_error(model: MetricsBasemodel) Callable [source]#
Create the root_mean_squared_error metric function.
\(RMSE=\sqrt{\frac{\sum(sec-prim)^2}{count}}\)