deterministic_funcs#

Contains UDFs for deterministic metric calculations in Spark queries.

Functions

annual_peak_relative_bias

Create the annual_peak_relative_bias metric function.

kling_gupta_efficiency

Create the kling_gupta_efficiency metric function.

kling_gupta_efficiency_mod1

Create the kling_gupta_efficiency_mod1 metric function.

kling_gupta_efficiency_mod2

Create the kling_gupta_efficiency_mod2 metric function.

max_value_delta

Create the max_value_delta metric function.

max_value_timedelta

Create the max_value_timedelta metric function.

mean_absolute_error

Create the mean_absolute_error metric function.

mean_absolute_relative_error

Create the Absolute Relative Error metric function.

mean_error

Create the Mean Error metric function.

mean_squared_error

Create the mean_squared_error metric function.

multiplicative_bias

Create the Multiplicative Bias metric function.

nash_sutcliffe_efficiency

Create the nash_sutcliffe_efficiency metric function.

nash_sutcliffe_efficiency_normalized

Create the nash_sutcliffe_efficiency_normalized metric function.

pearson_correlation

Create the Pearson Correlation Coefficient metric function.

r_squared

Create the R-squared metric function.

relative_bias

Create the Relative Bias metric function.

root_mean_squared_error

Create the root_mean_squared_error metric function.

root_mean_standard_deviation_ratio

Create the root_mean_standard_deviation_ratio metric function.

spearman_correlation

Create the Spearman metric function.

annual_peak_relative_bias(model: MetricsBasemodel) Callable[source]#

Create the annual_peak_relative_bias metric function.

\(Ann\ PF\ Bias=\frac{\sum(ann.\ peak_{sec}-ann.\ peak_{prim})}{\sum(ann.\ peak_{prim})}\)

kling_gupta_efficiency(model: MetricsBasemodel) Callable[source]#

Create the kling_gupta_efficiency metric function.

\(KGE=1-\sqrt{(r(sec, prim)-1)^2+(\frac{\sigma_{sec}}{\sigma_{prim}}-1)^2+(\frac{\mu_{sec}}{\mu_{sec}/\mu_{prim}}-1)^2}\)

kling_gupta_efficiency_mod1(model: MetricsBasemodel) Callable[source]#

Create the kling_gupta_efficiency_mod1 metric function.

\(KGE'=1-\sqrt{(r(sec, prim)-1)^2+(\frac{\sigma_{sec}/\mu_{sec}}{\sigma_{prim}/\mu_{prim}}-1)^2+(\frac{\mu_{sec}}{\mu_{sec}/\mu_{prim}}-1)^2}\)

kling_gupta_efficiency_mod2(model: MetricsBasemodel) Callable[source]#

Create the kling_gupta_efficiency_mod2 metric function.

\(KGE''=1-\sqrt{(r(sec, prim)-1)^2+(\frac{\sigma_{sec}}{\sigma_{prim}}-1)^2+\frac{(\mu_{sec}-\mu_{prim})^2}{\sigma_{prim}^2}}\)

max_value_delta(model: MetricsBasemodel) Callable[source]#

Create the max_value_delta metric function.

\(mvd=max(value_{sec})-max(value_{prim})\)

max_value_timedelta(model: MetricsBasemodel) Callable[source]#

Create the max_value_timedelta metric function.

\(mvtd=max\_value\_time_{sec}-max\_value\_time_{prim}\)

mean_absolute_error(model: MetricsBasemodel) Callable[source]#

Create the mean_absolute_error metric function.

\(MAE=\frac{\sum|sec-prim|}{count}\)

mean_absolute_relative_error(model: MetricsBasemodel) Callable[source]#

Create the Absolute Relative Error metric function.

\(Relative\ MAE=\frac{\sum|sec-prim|}{\sum(prim)}\)

mean_error(model: MetricsBasemodel) Callable[source]#

Create the Mean Error metric function.

\(Mean\ Error=\frac{\sum(sec-prim)}{count}\)

mean_squared_error(model: MetricsBasemodel) Callable[source]#

Create the mean_squared_error metric function.

\(MSE=\frac{\sum(sec-prim)^2}{count}\)

multiplicative_bias(model: MetricsBasemodel) Callable[source]#

Create the Multiplicative Bias metric function.

\(Mult.\ Bias=\frac{\mu_{sec}}{\mu_{prim}}\)

nash_sutcliffe_efficiency(model: MetricsBasemodel) Callable[source]#

Create the nash_sutcliffe_efficiency metric function.

\(NSE=1-\frac{\sum(prim-sec)^2}{\sum(prim-\mu_{prim}^2)}\)

nash_sutcliffe_efficiency_normalized(model: MetricsBasemodel) Callable[source]#

Create the nash_sutcliffe_efficiency_normalized metric function.

\(NNSE=\frac{1}{(2-NSE)}\)

pearson_correlation(model: MetricsBasemodel) Callable[source]#

Create the Pearson Correlation Coefficient metric function.

\(r=r(sec, prim)\)

r_squared(model: MetricsBasemodel) Callable[source]#

Create the R-squared metric function.

\(r^2=r(sec, prim)^2\)

relative_bias(model: MetricsBasemodel) Callable[source]#

Create the Relative Bias metric function.

\(Relative\ Bias=\frac{\sum(sec-prim)}{\sum(prim)}\)

root_mean_squared_error(model: MetricsBasemodel) Callable[source]#

Create the root_mean_squared_error metric function.

\(RMSE=\sqrt{\frac{\sum(sec-prim)^2}{count}}\)

root_mean_standard_deviation_ratio(model: MetricsBasemodel) Callable[source]#

Create the root_mean_standard_deviation_ratio metric function.

\(RMSE_{ratio}=\frac{RMSE}{\sigma_{obs}}\)

spearman_correlation(model: MetricsBasemodel) Callable[source]#

Create the Spearman metric function.

\(r_s=1-\frac{6*\sum|rank_{prim}-rank_{sec}|^2}{count(count^2-1)}\)