teehr.SignatureMetrics#
- class teehr.SignatureMetrics[source]#
Bases:
object
Define and customize signature metrics.
Notes
Signature metrics operate on a single field. Available signature metrics are:
Average
Count
MaxValueTime
Maximum
Minimum
Sum
Variance
Methods
- class Average(*, return_type: str | ~pyspark.sql.types.ArrayType | ~pyspark.sql.types.MapType = 'float', unpack_results: bool = False, unpack_function: ~typing.Callable = <function unpack_sdf_dict_columns>, transform: ~teehr.models.metrics.basemodels.TransformEnum = None, output_field_name: str = 'average', func: ~typing.Callable = <function average>, input_field_names: str | ~teehr.models.str_enum.StrEnum | ~typing.List[str | ~teehr.models.str_enum.StrEnum] = ['primary_value'], attrs: ~typing.Dict = {'category': MetricCategories.Signature, 'display_name': 'Average', 'optimal_value': None, 'short_name': 'average', 'value_range': None})#
Bases:
DeterministicBasemodel
Average.
- Parameters:
bootstrap (
DeterministicBasemodel
) – The bootstrap model, by default None.transform (
TransformEnum
) – The transformation to apply to the data, by default None.output_field_name (
str
) – The output field name, by default “average”.func (
Callable
) – The function to apply to the data, by defaultsignature_funcs.average()
.input_field_names (
Union[str
,StrEnum
,List[Union[str
,StrEnum]]]
) – The input field names, by default [“primary_value”].attrs (
Dict
) – The static attributes for the metric.
- model_config: ClassVar[ConfigDict] = {'arbitrary_types_allowed': True, 'extra': 'forbid', 'validate_assignment': True}#
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class Count(*, return_type: str | ~pyspark.sql.types.ArrayType | ~pyspark.sql.types.MapType = 'float', unpack_results: bool = False, unpack_function: ~typing.Callable = <function unpack_sdf_dict_columns>, output_field_name: str = 'count', func: ~typing.Callable = <function count>, input_field_names: str | ~teehr.models.str_enum.StrEnum | ~typing.List[str | ~teehr.models.str_enum.StrEnum] = ['primary_value'], attrs: ~typing.Dict = {'category': MetricCategories.Signature, 'display_name': 'Count', 'optimal_value': None, 'short_name': 'count', 'value_range': None})#
Bases:
DeterministicBasemodel
Count.
- Parameters:
bootstrap (
DeterministicBasemodel
) – The bootstrap model, by default None.transform (
TransformEnum
) – The transformation to apply to the data, by default None.output_field_name (
str
) – The output field name, by default “primary_count”.func (
Callable
) – The function to apply to the data, by defaultsignature_funcs.count()
.input_field_names (
Union[str
,StrEnum
,List[Union[str
,StrEnum]]]
) – The input field names, by default [“primary_value”].attrs (
Dict
) – The static attributes for the metric.
- model_config: ClassVar[ConfigDict] = {'arbitrary_types_allowed': True, 'extra': 'forbid', 'validate_assignment': True}#
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class MaxValueTime(*, return_type: str = 'timestamp', unpack_results: bool = False, unpack_function: ~typing.Callable = <function unpack_sdf_dict_columns>, transform: ~teehr.models.metrics.basemodels.TransformEnum = None, output_field_name: str = 'max_value_time', func: ~typing.Callable = <function max_value_time>, input_field_names: str | ~teehr.models.str_enum.StrEnum | ~typing.List[str | ~teehr.models.str_enum.StrEnum] = ['primary_value', 'value_time'], attrs: ~typing.Dict = {'category': MetricCategories.Signature, 'display_name': 'Max Value Time', 'optimal_value': None, 'short_name': 'max_val_time', 'value_range': None})#
Bases:
DeterministicBasemodel
Max Value Time.
- Parameters:
bootstrap (
DeterministicBasemodel
) – The bootstrap model, by default None.transform (
TransformEnum
) – The transformation to apply to the data, by default None.output_field_name (
str
) – The output field name, by default “max_value_time”.func (
Callable
) – The function to apply to the data, by defaultsignature_funcs.max_value_time()
.input_field_names (
Union[str
,StrEnum
,List[Union[str
,StrEnum]]]
) – The input field names, by default [“primary_value”].attrs (
Dict
) – The static attributes for the metric.
- model_config: ClassVar[ConfigDict] = {'arbitrary_types_allowed': True, 'extra': 'forbid', 'validate_assignment': True}#
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class Maximum(*, return_type: str | ~pyspark.sql.types.ArrayType | ~pyspark.sql.types.MapType = 'float', unpack_results: bool = False, unpack_function: ~typing.Callable = <function unpack_sdf_dict_columns>, transform: ~teehr.models.metrics.basemodels.TransformEnum = None, output_field_name: str = 'maximum', func: ~typing.Callable = <function maximum>, input_field_names: str | ~teehr.models.str_enum.StrEnum | ~typing.List[str | ~teehr.models.str_enum.StrEnum] = ['primary_value'], attrs: ~typing.Dict = {'category': MetricCategories.Signature, 'display_name': 'Maximum', 'optimal_value': None, 'short_name': 'maximum', 'value_range': None})#
Bases:
DeterministicBasemodel
Maximum.
- Parameters:
bootstrap (
DeterministicBasemodel
) – The bootstrap model, by default None.transform (
TransformEnum
) – The transformation to apply to the data, by default None.output_field_name (
str
) – The output field name, by default “maximum”.func (
Callable
) – The function to apply to the data, by defaultsignature_funcs.maximum()
.input_field_names (
Union[str
,StrEnum
,List[Union[str
,StrEnum]]]
) – The input field names, by default [“primary_value”].attrs (
Dict
) – The static attributes for the metric.
- model_config: ClassVar[ConfigDict] = {'arbitrary_types_allowed': True, 'extra': 'forbid', 'validate_assignment': True}#
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class Minimum(*, return_type: str | ~pyspark.sql.types.ArrayType | ~pyspark.sql.types.MapType = 'float', unpack_results: bool = False, unpack_function: ~typing.Callable = <function unpack_sdf_dict_columns>, transform: ~teehr.models.metrics.basemodels.TransformEnum = None, output_field_name: str = 'minimum', func: ~typing.Callable = <function minimum>, input_field_names: str | ~teehr.models.str_enum.StrEnum | ~typing.List[str | ~teehr.models.str_enum.StrEnum] = ['primary_value'], attrs: ~typing.Dict = {'category': MetricCategories.Signature, 'display_name': 'Minimum', 'optimal_value': None, 'short_name': 'minimum', 'value_range': None})#
Bases:
DeterministicBasemodel
Minimum.
- Parameters:
bootstrap (
DeterministicBasemodel
) – The bootstrap model, by default None.transform (
TransformEnum
) – The transformation to apply to the data, by default None.output_field_name (
str
) – The output field name, by default “primary_minimum”.func (
Callable
) – The function to apply to the data, by defaultsignature_funcs.minimum()
.input_field_names (
Union[str
,StrEnum
,List[Union[str
,StrEnum]]]
) – The input field names, by default [“primary_value”].attrs (
Dict
) – The static attributes for the metric.
- model_config: ClassVar[ConfigDict] = {'arbitrary_types_allowed': True, 'extra': 'forbid', 'validate_assignment': True}#
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class Sum(*, return_type: str | ~pyspark.sql.types.ArrayType | ~pyspark.sql.types.MapType = 'float', unpack_results: bool = False, unpack_function: ~typing.Callable = <function unpack_sdf_dict_columns>, transform: ~teehr.models.metrics.basemodels.TransformEnum = None, output_field_name: str = 'sum', func: ~typing.Callable = <function sum>, input_field_names: str | ~teehr.models.str_enum.StrEnum | ~typing.List[str | ~teehr.models.str_enum.StrEnum] = ['primary_value'], attrs: ~typing.Dict = {'category': MetricCategories.Signature, 'display_name': 'Sum', 'optimal_value': None, 'short_name': 'sum', 'value_range': None})#
Bases:
DeterministicBasemodel
Sum.
- Parameters:
bootstrap (
DeterministicBasemodel
) – The bootstrap model, by default None.transform (
TransformEnum
) – The transformation to apply to the data, by default None.output_field_name (
str
) – The output field name, by default “sum”.func (
Callable
) – The function to apply to the data, by defaultsignature_funcs.sum()
.input_field_names (
Union[str
,StrEnum
,List[Union[str
,StrEnum]]]
) – The input field names, by default [“primary_value”].attrs (
Dict
) – The static attributes for the metric.
- model_config: ClassVar[ConfigDict] = {'arbitrary_types_allowed': True, 'extra': 'forbid', 'validate_assignment': True}#
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class Variance(*, return_type: str | ~pyspark.sql.types.ArrayType | ~pyspark.sql.types.MapType = 'float', unpack_results: bool = False, unpack_function: ~typing.Callable = <function unpack_sdf_dict_columns>, bootstrap: ~teehr.models.metrics.basemodels.BootstrapBasemodel = None, transform: ~teehr.models.metrics.basemodels.TransformEnum = None, output_field_name: str = 'variance', func: ~typing.Callable = <function variance>, input_field_names: str | ~teehr.models.str_enum.StrEnum | ~typing.List[str | ~teehr.models.str_enum.StrEnum] = ['primary_value'], attrs: ~typing.Dict = {'category': MetricCategories.Signature, 'display_name': 'Variance', 'optimal_value': None, 'short_name': 'variance', 'value_range': None})#
Bases:
DeterministicBasemodel
Variance.
- Parameters:
bootstrap (
DeterministicBasemodel
) – The bootstrap model, by default None.transform (
TransformEnum
) – The transformation to apply to the data, by default None.output_field_name (
str
) – The output field name, by default “variance”.func (
Callable
) – The function to apply to the data, by defaultsignature_funcs.variance()
.input_field_names (
Union[str
,StrEnum
,List[Union[str
,StrEnum]]]
) – The input field names, by default [“primary_value”].attrs (
Dict
) – The static attributes for the metric.
- model_config: ClassVar[ConfigDict] = {'arbitrary_types_allowed': True, 'extra': 'forbid', 'validate_assignment': True}#
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].