TimeseriesAwareCalculatedFields#

class TimeseriesAwareCalculatedFields[source]#

Bases: object

Timeseries aware calculated fields.

Notes

Timeseries aware CFs are aware of ordered groups of data (e.g., a timeseries). This is useful for things such as event detection, base flow separation, and other fields that need to be calculated based on a entire timeseries. The definition of what creates a unique set of timeseries (i.e., a timeseries) can be specified.

Available Calculated Fields:

  • PercentileEventDetection

  • BaseflowDominatedPeriods

  • LyneHollickBaseflow

  • ChapmanBaseflow

  • ChapmanMaxwellBaseflow

  • BoughtonBaseflow

  • FureyBaseflow

  • EckhardtBaseflow

  • EWMABaseflow

  • WillemsBaseflow

  • UKIHBaseflow

Methods

class BaseflowPeriodDetection(*, value_time_field_name: str = 'value_time', value_field_name: str = 'primary_value', baseflow_field_name: str = None, event_threshold: float = 1.0, output_baseflow_period_field_name: str = 'baseflow_period', output_baseflow_period_id_field_name: str = 'baseflow_period_id', uniqueness_fields: str | List[str] = None)#

Bases: CalculatedFieldABC, CalculatedFieldBaseModel

Determines baseflow dominated periods.

This class identifies periods where baseflow is dominant in the streamflow timeseries by adding two columns. The ‘baseflow_period’ column (bool) indicates whether the baseflow portion of the streamflow timeseries exceeds the quickflow portion, and the ‘baseflow_period_id’ column (string) groups continuous segments of baseflow dominated periods and assigns a unique ID to each segment in the format “startdate-enddate”. Users can define a custom ‘event_threshold’ value to adjust the sensitivity of baseflow detection by applying a multiplier to the quickflow portion of the streamflow timeseries.

Properties#

  • value_time_field_name:

    The name of the column containing the timestamp. Default: “value_time”

  • value_field_name:

    The name of the column containing the value to compare with baseflow. Default: “primary_value”

  • baseflow_field_name:

    The name of the column containing the baseflow values. Default: None

  • event_threshold:

    The threshold multiplier value to determine event periods. The multiplier is applied to the quickflow portion of the streamflow timeseries when determining if the streamflow timeseries is dominated by baseflow. Default: 1.0

  • output_baseflow_period_field_name:

    The name of the column to store the baseflow period information. Default: “baseflow_period”

  • output_baseflow_period_id_field_name:

    The name of the column to store the baseflow period ID information. Default: “baseflow_period_id”

  • uniqueness_fields:

    The columns to use to uniquely identify each timeseries.

    Default: [
        'reference_time',
        'primary_location_id',
        'configuration_name',
        'variable_name',
        'unit_name'
    ]
    
copy(*, include: AbstractSetIntStr | MappingIntStrAny | None = None, exclude: AbstractSetIntStr | MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Self#

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Args:

include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

model_config: ClassVar[ConfigDict] = {'arbitrary_types_allowed': True, 'extra': 'forbid', 'validate_assignment': True}#

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Self#

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == ‘allow’, then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == ‘ignore’ (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == ‘forbid’ does not result in an error if extra values are passed, but they will be ignored.

Args:
_fields_set: A set of field names that were originally explicitly set during instantiation. If provided,

this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

values: Trusted or pre-validated data dictionary.

Returns:

A new instance of the Model class with validated data.

model_copy(*, update: Mapping[str, Any] | None = None, deep: bool = False) Self#
!!! abstract “Usage Documentation”

[model_copy](../concepts/serialization.md#model_copy)

Returns a copy of the model.

!!! note

The underlying instance’s [__dict__][object.__dict__] attribute is copied. This might have unexpected side effects if you store anything in it, on top of the model fields (e.g. the value of [cached properties][functools.cached_property]).

Args:
update: Values to change/add in the new model. Note: the data is not validated

before creating the new model. You should trust this data.

deep: Set to True to make a deep copy of the model.

Returns:

New model instance.

model_dump(*, mode: Literal['json', 'python'] | str = 'python', include: set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None = None, exclude: set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None = None, context: Any | None = None, by_alias: bool | None = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool | Literal['none', 'warn', 'error'] = True, fallback: Callable[[Any], Any] | None = None, serialize_as_any: bool = False) dict[str, Any]#
!!! abstract “Usage Documentation”

[model_dump](../concepts/serialization.md#modelmodel_dump)

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Args:
mode: The mode in which to_python should run.

If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.

include: A set of fields to include in the output. exclude: A set of fields to exclude from the output. context: Additional context to pass to the serializer. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: How to handle serialization errors. False/”none” ignores them, True/”warn” logs errors,

“error” raises a [PydanticSerializationError][pydantic_core.PydanticSerializationError].

fallback: A function to call when an unknown value is encountered. If not provided,

a [PydanticSerializationError][pydantic_core.PydanticSerializationError] error is raised.

serialize_as_any: Whether to serialize fields with duck-typing serialization behavior.

Returns:

A dictionary representation of the model.

model_dump_json(*, indent: int | None = None, include: set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None = None, exclude: set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None = None, context: Any | None = None, by_alias: bool | None = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool | Literal['none', 'warn', 'error'] = True, fallback: Callable[[Any], Any] | None = None, serialize_as_any: bool = False) str#
!!! abstract “Usage Documentation”

[model_dump_json](../concepts/serialization.md#modelmodel_dump_json)

Generates a JSON representation of the model using Pydantic’s to_json method.

Args:

indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. context: Additional context to pass to the serializer. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: How to handle serialization errors. False/”none” ignores them, True/”warn” logs errors,

“error” raises a [PydanticSerializationError][pydantic_core.PydanticSerializationError].

fallback: A function to call when an unknown value is encountered. If not provided,

a [PydanticSerializationError][pydantic_core.PydanticSerializationError] error is raised.

serialize_as_any: Whether to serialize fields with duck-typing serialization behavior.

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None#

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to “allow”.

property model_fields_set: set[str]#

Returns the set of fields that have been explicitly set on this model instance.

Returns:
A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias: bool = True, ref_template: str = '#/$defs/{model}', schema_generator: type[~pydantic.json_schema.GenerateJsonSchema] = <class 'pydantic.json_schema.GenerateJsonSchema'>, mode: ~typing.Literal['validation', 'serialization'] = 'validation') dict[str, Any]#

Generates a JSON schema for a model class.

Args:

by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of

GenerateJsonSchema with your desired modifications

mode: The mode in which to generate the schema.

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params: tuple[type[Any], ...]) str#

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Args:
params: Tuple of types of the class. Given a generic class

Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError: Raised when trying to generate concrete names for non-generic models.

model_post_init(context: Any, /) None#

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: MappingNamespace | None = None) bool | None#

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Args:

force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: Any | None = None, by_alias: bool | None = None, by_name: bool | None = None) Self#

Validate a pydantic model instance.

Args:

obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator. by_alias: Whether to use the field’s alias when validating against the provided input data. by_name: Whether to use the field’s name when validating against the provided input data.

Raises:

ValidationError: If the object could not be validated.

Returns:

The validated model instance.

classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: Any | None = None, by_alias: bool | None = None, by_name: bool | None = None) Self#
!!! abstract “Usage Documentation”

[JSON Parsing](../concepts/json.md#json-parsing)

Validate the given JSON data against the Pydantic model.

Args:

json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator. by_alias: Whether to use the field’s alias when validating against the provided input data. by_name: Whether to use the field’s name when validating against the provided input data.

Returns:

The validated Pydantic model.

Raises:

ValidationError: If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: Any | None = None, by_alias: bool | None = None, by_name: bool | None = None) Self#

Validate the given object with string data against the Pydantic model.

Args:

obj: The object containing string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator. by_alias: Whether to use the field’s alias when validating against the provided input data. by_name: Whether to use the field’s name when validating against the provided input data.

Returns:

The validated Pydantic model.

class BoughtonBaseflow(*, value_time_field_name: str = 'value_time', value_field_name: str = 'primary_value', output_field_name: str = 'boughton_baseflow', beta: float = 0.925, a: float = None, c: float = None, uniqueness_fields: str | List[str] = None)#

Bases: CalculatedFieldABC, CalculatedFieldBaseModel

Baseflow separation using the Boughton method.

This class implements the Boughton double-parameter filter method, which separates baseflow from quickflow using a timeseries of streamflow data. Adds a column to the joined timeseries table with the baseflow timeseries.

Properties#

  • value_time_field_name:

    The name of the column containing the timestamp. Default: “value_time”

  • value_field_name:

    The name of the column containing the value to separate baseflow from. Default: “primary_value”

  • output_field_name:

    The name of the column to store the baseflow separation result. Default: “boughton_baseflow”

  • beta:

    The filter parameter for the Lyne-Hollick filter method. Default: 0.925

  • a: float

    The recession coefficient for the Boughton filter method. If not provided, it will be estimated using the input timeseries data. Default: None

  • c: float

    The shape parameter for the Boughton filter method. If not provided, it will be estimated using the input timeseries data. Default: None

  • uniqueness_fields:

    The columns to use to uniquely identify each timeseries.

    Default: [
        'reference_time',
        'primary_location_id',
        'configuration_name',
        'variable_name',
        'unit_name'
    ]
    
copy(*, include: AbstractSetIntStr | MappingIntStrAny | None = None, exclude: AbstractSetIntStr | MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Self#

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Args:

include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

model_config: ClassVar[ConfigDict] = {'arbitrary_types_allowed': True, 'extra': 'forbid', 'validate_assignment': True}#

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Self#

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == ‘allow’, then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == ‘ignore’ (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == ‘forbid’ does not result in an error if extra values are passed, but they will be ignored.

Args:
_fields_set: A set of field names that were originally explicitly set during instantiation. If provided,

this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

values: Trusted or pre-validated data dictionary.

Returns:

A new instance of the Model class with validated data.

model_copy(*, update: Mapping[str, Any] | None = None, deep: bool = False) Self#
!!! abstract “Usage Documentation”

[model_copy](../concepts/serialization.md#model_copy)

Returns a copy of the model.

!!! note

The underlying instance’s [__dict__][object.__dict__] attribute is copied. This might have unexpected side effects if you store anything in it, on top of the model fields (e.g. the value of [cached properties][functools.cached_property]).

Args:
update: Values to change/add in the new model. Note: the data is not validated

before creating the new model. You should trust this data.

deep: Set to True to make a deep copy of the model.

Returns:

New model instance.

model_dump(*, mode: Literal['json', 'python'] | str = 'python', include: set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None = None, exclude: set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None = None, context: Any | None = None, by_alias: bool | None = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool | Literal['none', 'warn', 'error'] = True, fallback: Callable[[Any], Any] | None = None, serialize_as_any: bool = False) dict[str, Any]#
!!! abstract “Usage Documentation”

[model_dump](../concepts/serialization.md#modelmodel_dump)

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Args:
mode: The mode in which to_python should run.

If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.

include: A set of fields to include in the output. exclude: A set of fields to exclude from the output. context: Additional context to pass to the serializer. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: How to handle serialization errors. False/”none” ignores them, True/”warn” logs errors,

“error” raises a [PydanticSerializationError][pydantic_core.PydanticSerializationError].

fallback: A function to call when an unknown value is encountered. If not provided,

a [PydanticSerializationError][pydantic_core.PydanticSerializationError] error is raised.

serialize_as_any: Whether to serialize fields with duck-typing serialization behavior.

Returns:

A dictionary representation of the model.

model_dump_json(*, indent: int | None = None, include: set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None = None, exclude: set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None = None, context: Any | None = None, by_alias: bool | None = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool | Literal['none', 'warn', 'error'] = True, fallback: Callable[[Any], Any] | None = None, serialize_as_any: bool = False) str#
!!! abstract “Usage Documentation”

[model_dump_json](../concepts/serialization.md#modelmodel_dump_json)

Generates a JSON representation of the model using Pydantic’s to_json method.

Args:

indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. context: Additional context to pass to the serializer. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: How to handle serialization errors. False/”none” ignores them, True/”warn” logs errors,

“error” raises a [PydanticSerializationError][pydantic_core.PydanticSerializationError].

fallback: A function to call when an unknown value is encountered. If not provided,

a [PydanticSerializationError][pydantic_core.PydanticSerializationError] error is raised.

serialize_as_any: Whether to serialize fields with duck-typing serialization behavior.

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None#

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to “allow”.

property model_fields_set: set[str]#

Returns the set of fields that have been explicitly set on this model instance.

Returns:
A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias: bool = True, ref_template: str = '#/$defs/{model}', schema_generator: type[~pydantic.json_schema.GenerateJsonSchema] = <class 'pydantic.json_schema.GenerateJsonSchema'>, mode: ~typing.Literal['validation', 'serialization'] = 'validation') dict[str, Any]#

Generates a JSON schema for a model class.

Args:

by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of

GenerateJsonSchema with your desired modifications

mode: The mode in which to generate the schema.

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params: tuple[type[Any], ...]) str#

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Args:
params: Tuple of types of the class. Given a generic class

Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError: Raised when trying to generate concrete names for non-generic models.

model_post_init(context: Any, /) None#

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: MappingNamespace | None = None) bool | None#

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Args:

force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: Any | None = None, by_alias: bool | None = None, by_name: bool | None = None) Self#

Validate a pydantic model instance.

Args:

obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator. by_alias: Whether to use the field’s alias when validating against the provided input data. by_name: Whether to use the field’s name when validating against the provided input data.

Raises:

ValidationError: If the object could not be validated.

Returns:

The validated model instance.

classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: Any | None = None, by_alias: bool | None = None, by_name: bool | None = None) Self#
!!! abstract “Usage Documentation”

[JSON Parsing](../concepts/json.md#json-parsing)

Validate the given JSON data against the Pydantic model.

Args:

json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator. by_alias: Whether to use the field’s alias when validating against the provided input data. by_name: Whether to use the field’s name when validating against the provided input data.

Returns:

The validated Pydantic model.

Raises:

ValidationError: If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: Any | None = None, by_alias: bool | None = None, by_name: bool | None = None) Self#

Validate the given object with string data against the Pydantic model.

Args:

obj: The object containing string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator. by_alias: Whether to use the field’s alias when validating against the provided input data. by_name: Whether to use the field’s name when validating against the provided input data.

Returns:

The validated Pydantic model.

class ChapmanBaseflow(*, value_time_field_name: str = 'value_time', value_field_name: str = 'primary_value', output_field_name: str = 'chapman_baseflow', beta: float = 0.925, a: float = None, uniqueness_fields: str | List[str] = None)#

Bases: CalculatedFieldABC, CalculatedFieldBaseModel

Baseflow separation using the Chapman method.

This class implements the Chapman filter method, which separates baseflow from quickflow using a timeseries of streamflow data. Adds a column to the joined timeseries table with the baseflow timeseries.

Properties#

  • value_time_field_name:

    The name of the column containing the timestamp. Default: “value_time”

  • value_field_name:

    The name of the column containing the value to separate baseflow from. Default: “primary_value”

  • output_field_name:

    The name of the column to store the baseflow separation result. Default: “chapman_baseflow”

  • beta:

    The filter parameter for the Lyne-Hollick filter method. Default: 0.925

  • a: float

    The recession coefficient for the Chapman filter method. If not provided, it will be estimated using the input timeseries data. Default: None

  • uniqueness_fields:

    The columns to use to uniquely identify each timeseries.

    Default: [
        'reference_time',
        'primary_location_id',
        'configuration_name',
        'variable_name',
        'unit_name'
    ]
    
copy(*, include: AbstractSetIntStr | MappingIntStrAny | None = None, exclude: AbstractSetIntStr | MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Self#

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Args:

include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

model_config: ClassVar[ConfigDict] = {'arbitrary_types_allowed': True, 'extra': 'forbid', 'validate_assignment': True}#

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Self#

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == ‘allow’, then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == ‘ignore’ (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == ‘forbid’ does not result in an error if extra values are passed, but they will be ignored.

Args:
_fields_set: A set of field names that were originally explicitly set during instantiation. If provided,

this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

values: Trusted or pre-validated data dictionary.

Returns:

A new instance of the Model class with validated data.

model_copy(*, update: Mapping[str, Any] | None = None, deep: bool = False) Self#
!!! abstract “Usage Documentation”

[model_copy](../concepts/serialization.md#model_copy)

Returns a copy of the model.

!!! note

The underlying instance’s [__dict__][object.__dict__] attribute is copied. This might have unexpected side effects if you store anything in it, on top of the model fields (e.g. the value of [cached properties][functools.cached_property]).

Args:
update: Values to change/add in the new model. Note: the data is not validated

before creating the new model. You should trust this data.

deep: Set to True to make a deep copy of the model.

Returns:

New model instance.

model_dump(*, mode: Literal['json', 'python'] | str = 'python', include: set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None = None, exclude: set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None = None, context: Any | None = None, by_alias: bool | None = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool | Literal['none', 'warn', 'error'] = True, fallback: Callable[[Any], Any] | None = None, serialize_as_any: bool = False) dict[str, Any]#
!!! abstract “Usage Documentation”

[model_dump](../concepts/serialization.md#modelmodel_dump)

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Args:
mode: The mode in which to_python should run.

If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.

include: A set of fields to include in the output. exclude: A set of fields to exclude from the output. context: Additional context to pass to the serializer. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: How to handle serialization errors. False/”none” ignores them, True/”warn” logs errors,

“error” raises a [PydanticSerializationError][pydantic_core.PydanticSerializationError].

fallback: A function to call when an unknown value is encountered. If not provided,

a [PydanticSerializationError][pydantic_core.PydanticSerializationError] error is raised.

serialize_as_any: Whether to serialize fields with duck-typing serialization behavior.

Returns:

A dictionary representation of the model.

model_dump_json(*, indent: int | None = None, include: set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None = None, exclude: set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None = None, context: Any | None = None, by_alias: bool | None = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool | Literal['none', 'warn', 'error'] = True, fallback: Callable[[Any], Any] | None = None, serialize_as_any: bool = False) str#
!!! abstract “Usage Documentation”

[model_dump_json](../concepts/serialization.md#modelmodel_dump_json)

Generates a JSON representation of the model using Pydantic’s to_json method.

Args:

indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. context: Additional context to pass to the serializer. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: How to handle serialization errors. False/”none” ignores them, True/”warn” logs errors,

“error” raises a [PydanticSerializationError][pydantic_core.PydanticSerializationError].

fallback: A function to call when an unknown value is encountered. If not provided,

a [PydanticSerializationError][pydantic_core.PydanticSerializationError] error is raised.

serialize_as_any: Whether to serialize fields with duck-typing serialization behavior.

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None#

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to “allow”.

property model_fields_set: set[str]#

Returns the set of fields that have been explicitly set on this model instance.

Returns:
A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias: bool = True, ref_template: str = '#/$defs/{model}', schema_generator: type[~pydantic.json_schema.GenerateJsonSchema] = <class 'pydantic.json_schema.GenerateJsonSchema'>, mode: ~typing.Literal['validation', 'serialization'] = 'validation') dict[str, Any]#

Generates a JSON schema for a model class.

Args:

by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of

GenerateJsonSchema with your desired modifications

mode: The mode in which to generate the schema.

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params: tuple[type[Any], ...]) str#

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Args:
params: Tuple of types of the class. Given a generic class

Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError: Raised when trying to generate concrete names for non-generic models.

model_post_init(context: Any, /) None#

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: MappingNamespace | None = None) bool | None#

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Args:

force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: Any | None = None, by_alias: bool | None = None, by_name: bool | None = None) Self#

Validate a pydantic model instance.

Args:

obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator. by_alias: Whether to use the field’s alias when validating against the provided input data. by_name: Whether to use the field’s name when validating against the provided input data.

Raises:

ValidationError: If the object could not be validated.

Returns:

The validated model instance.

classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: Any | None = None, by_alias: bool | None = None, by_name: bool | None = None) Self#
!!! abstract “Usage Documentation”

[JSON Parsing](../concepts/json.md#json-parsing)

Validate the given JSON data against the Pydantic model.

Args:

json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator. by_alias: Whether to use the field’s alias when validating against the provided input data. by_name: Whether to use the field’s name when validating against the provided input data.

Returns:

The validated Pydantic model.

Raises:

ValidationError: If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: Any | None = None, by_alias: bool | None = None, by_name: bool | None = None) Self#

Validate the given object with string data against the Pydantic model.

Args:

obj: The object containing string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator. by_alias: Whether to use the field’s alias when validating against the provided input data. by_name: Whether to use the field’s name when validating against the provided input data.

Returns:

The validated Pydantic model.

class ChapmanMaxwellBaseflow(*, value_time_field_name: str = 'value_time', value_field_name: str = 'primary_value', output_field_name: str = 'chapman_maxwell_baseflow', beta: float = 0.925, a: float = None, uniqueness_fields: str | List[str] = None)#

Bases: CalculatedFieldABC, CalculatedFieldBaseModel

Baseflow separation using the Chapman-Maxwell method.

This class implements the Chapman-Maxwell filter method, which separates baseflow from quickflow using a timeseries of streamflow data. Adds a column to the joined timeseries table with the baseflow timeseries.

Properties#

  • value_time_field_name:

    The name of the column containing the timestamp. Default: “value_time”

  • value_field_name:

    The name of the column containing the value to separate baseflow from. Default: “primary_value”

  • output_field_name:

    The name of the column to store the baseflow separation result. Default: “chapman_maxwell_baseflow”

  • beta:

    The filter parameter for the Lyne-Hollick filter method. Default: 0.925

  • a: float

    The recession coefficient for the Chapman-Maxwell filter method. If not provided, it will be estimated using the input timeseries data. Default: None

  • uniqueness_fields:

    The columns to use to uniquely identify each timeseries.

    Default: [
        'reference_time',
        'primary_location_id',
        'configuration_name',
        'variable_name',
        'unit_name'
    ]
    
copy(*, include: AbstractSetIntStr | MappingIntStrAny | None = None, exclude: AbstractSetIntStr | MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Self#

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Args:

include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

model_config: ClassVar[ConfigDict] = {'arbitrary_types_allowed': True, 'extra': 'forbid', 'validate_assignment': True}#

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Self#

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == ‘allow’, then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == ‘ignore’ (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == ‘forbid’ does not result in an error if extra values are passed, but they will be ignored.

Args:
_fields_set: A set of field names that were originally explicitly set during instantiation. If provided,

this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

values: Trusted or pre-validated data dictionary.

Returns:

A new instance of the Model class with validated data.

model_copy(*, update: Mapping[str, Any] | None = None, deep: bool = False) Self#
!!! abstract “Usage Documentation”

[model_copy](../concepts/serialization.md#model_copy)

Returns a copy of the model.

!!! note

The underlying instance’s [__dict__][object.__dict__] attribute is copied. This might have unexpected side effects if you store anything in it, on top of the model fields (e.g. the value of [cached properties][functools.cached_property]).

Args:
update: Values to change/add in the new model. Note: the data is not validated

before creating the new model. You should trust this data.

deep: Set to True to make a deep copy of the model.

Returns:

New model instance.

model_dump(*, mode: Literal['json', 'python'] | str = 'python', include: set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None = None, exclude: set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None = None, context: Any | None = None, by_alias: bool | None = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool | Literal['none', 'warn', 'error'] = True, fallback: Callable[[Any], Any] | None = None, serialize_as_any: bool = False) dict[str, Any]#
!!! abstract “Usage Documentation”

[model_dump](../concepts/serialization.md#modelmodel_dump)

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Args:
mode: The mode in which to_python should run.

If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.

include: A set of fields to include in the output. exclude: A set of fields to exclude from the output. context: Additional context to pass to the serializer. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: How to handle serialization errors. False/”none” ignores them, True/”warn” logs errors,

“error” raises a [PydanticSerializationError][pydantic_core.PydanticSerializationError].

fallback: A function to call when an unknown value is encountered. If not provided,

a [PydanticSerializationError][pydantic_core.PydanticSerializationError] error is raised.

serialize_as_any: Whether to serialize fields with duck-typing serialization behavior.

Returns:

A dictionary representation of the model.

model_dump_json(*, indent: int | None = None, include: set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None = None, exclude: set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None = None, context: Any | None = None, by_alias: bool | None = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool | Literal['none', 'warn', 'error'] = True, fallback: Callable[[Any], Any] | None = None, serialize_as_any: bool = False) str#
!!! abstract “Usage Documentation”

[model_dump_json](../concepts/serialization.md#modelmodel_dump_json)

Generates a JSON representation of the model using Pydantic’s to_json method.

Args:

indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. context: Additional context to pass to the serializer. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: How to handle serialization errors. False/”none” ignores them, True/”warn” logs errors,

“error” raises a [PydanticSerializationError][pydantic_core.PydanticSerializationError].

fallback: A function to call when an unknown value is encountered. If not provided,

a [PydanticSerializationError][pydantic_core.PydanticSerializationError] error is raised.

serialize_as_any: Whether to serialize fields with duck-typing serialization behavior.

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None#

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to “allow”.

property model_fields_set: set[str]#

Returns the set of fields that have been explicitly set on this model instance.

Returns:
A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias: bool = True, ref_template: str = '#/$defs/{model}', schema_generator: type[~pydantic.json_schema.GenerateJsonSchema] = <class 'pydantic.json_schema.GenerateJsonSchema'>, mode: ~typing.Literal['validation', 'serialization'] = 'validation') dict[str, Any]#

Generates a JSON schema for a model class.

Args:

by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of

GenerateJsonSchema with your desired modifications

mode: The mode in which to generate the schema.

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params: tuple[type[Any], ...]) str#

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Args:
params: Tuple of types of the class. Given a generic class

Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError: Raised when trying to generate concrete names for non-generic models.

model_post_init(context: Any, /) None#

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: MappingNamespace | None = None) bool | None#

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Args:

force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: Any | None = None, by_alias: bool | None = None, by_name: bool | None = None) Self#

Validate a pydantic model instance.

Args:

obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator. by_alias: Whether to use the field’s alias when validating against the provided input data. by_name: Whether to use the field’s name when validating against the provided input data.

Raises:

ValidationError: If the object could not be validated.

Returns:

The validated model instance.

classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: Any | None = None, by_alias: bool | None = None, by_name: bool | None = None) Self#
!!! abstract “Usage Documentation”

[JSON Parsing](../concepts/json.md#json-parsing)

Validate the given JSON data against the Pydantic model.

Args:

json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator. by_alias: Whether to use the field’s alias when validating against the provided input data. by_name: Whether to use the field’s name when validating against the provided input data.

Returns:

The validated Pydantic model.

Raises:

ValidationError: If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: Any | None = None, by_alias: bool | None = None, by_name: bool | None = None) Self#

Validate the given object with string data against the Pydantic model.

Args:

obj: The object containing string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator. by_alias: Whether to use the field’s alias when validating against the provided input data. by_name: Whether to use the field’s name when validating against the provided input data.

Returns:

The validated Pydantic model.

class EWMABaseflow(*, value_time_field_name: str = 'value_time', value_field_name: str = 'primary_value', output_field_name: str = 'ewma_baseflow', beta: float = 0.925, e: float = None, uniqueness_fields: str | List[str] = None)#

Bases: CalculatedFieldABC, CalculatedFieldBaseModel

Baseflow separation using the EWMA method.

This class implements the exponential moving average (EWMA) filter method, which separates baseflow from quickflow using a timeseries of streamflow data. Adds a column to the joined timeseries table with the baseflow timeseries.

Properties#

  • value_time_field_name:

    The name of the column containing the timestamp. Default: “value_time”

  • value_field_name:

    The name of the column containing the value to separate baseflow from. Default: “primary_value”

  • output_field_name:

    The name of the column to store the baseflow separation result. Default: “ewma_baseflow”

  • beta:

    The filter parameter for the Lyne-Hollick filter method. Default: 0.925

  • e: float

    The smoothing parameter for the EWMA filter method. If not provided, it will be estimated using the input timeseries data. Default: None

  • uniqueness_fields:

    The columns to use to uniquely identify each timeseries.

    Default: [
        'reference_time',
        'primary_location_id',
        'configuration_name',
        'variable_name',
        'unit_name'
    ]
    
copy(*, include: AbstractSetIntStr | MappingIntStrAny | None = None, exclude: AbstractSetIntStr | MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Self#

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Args:

include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

model_config: ClassVar[ConfigDict] = {'arbitrary_types_allowed': True, 'extra': 'forbid', 'validate_assignment': True}#

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Self#

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == ‘allow’, then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == ‘ignore’ (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == ‘forbid’ does not result in an error if extra values are passed, but they will be ignored.

Args:
_fields_set: A set of field names that were originally explicitly set during instantiation. If provided,

this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

values: Trusted or pre-validated data dictionary.

Returns:

A new instance of the Model class with validated data.

model_copy(*, update: Mapping[str, Any] | None = None, deep: bool = False) Self#
!!! abstract “Usage Documentation”

[model_copy](../concepts/serialization.md#model_copy)

Returns a copy of the model.

!!! note

The underlying instance’s [__dict__][object.__dict__] attribute is copied. This might have unexpected side effects if you store anything in it, on top of the model fields (e.g. the value of [cached properties][functools.cached_property]).

Args:
update: Values to change/add in the new model. Note: the data is not validated

before creating the new model. You should trust this data.

deep: Set to True to make a deep copy of the model.

Returns:

New model instance.

model_dump(*, mode: Literal['json', 'python'] | str = 'python', include: set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None = None, exclude: set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None = None, context: Any | None = None, by_alias: bool | None = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool | Literal['none', 'warn', 'error'] = True, fallback: Callable[[Any], Any] | None = None, serialize_as_any: bool = False) dict[str, Any]#
!!! abstract “Usage Documentation”

[model_dump](../concepts/serialization.md#modelmodel_dump)

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Args:
mode: The mode in which to_python should run.

If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.

include: A set of fields to include in the output. exclude: A set of fields to exclude from the output. context: Additional context to pass to the serializer. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: How to handle serialization errors. False/”none” ignores them, True/”warn” logs errors,

“error” raises a [PydanticSerializationError][pydantic_core.PydanticSerializationError].

fallback: A function to call when an unknown value is encountered. If not provided,

a [PydanticSerializationError][pydantic_core.PydanticSerializationError] error is raised.

serialize_as_any: Whether to serialize fields with duck-typing serialization behavior.

Returns:

A dictionary representation of the model.

model_dump_json(*, indent: int | None = None, include: set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None = None, exclude: set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None = None, context: Any | None = None, by_alias: bool | None = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool | Literal['none', 'warn', 'error'] = True, fallback: Callable[[Any], Any] | None = None, serialize_as_any: bool = False) str#
!!! abstract “Usage Documentation”

[model_dump_json](../concepts/serialization.md#modelmodel_dump_json)

Generates a JSON representation of the model using Pydantic’s to_json method.

Args:

indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. context: Additional context to pass to the serializer. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: How to handle serialization errors. False/”none” ignores them, True/”warn” logs errors,

“error” raises a [PydanticSerializationError][pydantic_core.PydanticSerializationError].

fallback: A function to call when an unknown value is encountered. If not provided,

a [PydanticSerializationError][pydantic_core.PydanticSerializationError] error is raised.

serialize_as_any: Whether to serialize fields with duck-typing serialization behavior.

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None#

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to “allow”.

property model_fields_set: set[str]#

Returns the set of fields that have been explicitly set on this model instance.

Returns:
A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias: bool = True, ref_template: str = '#/$defs/{model}', schema_generator: type[~pydantic.json_schema.GenerateJsonSchema] = <class 'pydantic.json_schema.GenerateJsonSchema'>, mode: ~typing.Literal['validation', 'serialization'] = 'validation') dict[str, Any]#

Generates a JSON schema for a model class.

Args:

by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of

GenerateJsonSchema with your desired modifications

mode: The mode in which to generate the schema.

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params: tuple[type[Any], ...]) str#

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Args:
params: Tuple of types of the class. Given a generic class

Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError: Raised when trying to generate concrete names for non-generic models.

model_post_init(context: Any, /) None#

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: MappingNamespace | None = None) bool | None#

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Args:

force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: Any | None = None, by_alias: bool | None = None, by_name: bool | None = None) Self#

Validate a pydantic model instance.

Args:

obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator. by_alias: Whether to use the field’s alias when validating against the provided input data. by_name: Whether to use the field’s name when validating against the provided input data.

Raises:

ValidationError: If the object could not be validated.

Returns:

The validated model instance.

classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: Any | None = None, by_alias: bool | None = None, by_name: bool | None = None) Self#
!!! abstract “Usage Documentation”

[JSON Parsing](../concepts/json.md#json-parsing)

Validate the given JSON data against the Pydantic model.

Args:

json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator. by_alias: Whether to use the field’s alias when validating against the provided input data. by_name: Whether to use the field’s name when validating against the provided input data.

Returns:

The validated Pydantic model.

Raises:

ValidationError: If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: Any | None = None, by_alias: bool | None = None, by_name: bool | None = None) Self#

Validate the given object with string data against the Pydantic model.

Args:

obj: The object containing string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator. by_alias: Whether to use the field’s alias when validating against the provided input data. by_name: Whether to use the field’s name when validating against the provided input data.

Returns:

The validated Pydantic model.

class EckhardtBaseflow(*, value_time_field_name: str = 'value_time', value_field_name: str = 'primary_value', output_field_name: str = 'eckhardt_baseflow', beta: float = 0.925, a: float = None, BFImax: float = None, uniqueness_fields: str | List[str] = None)#

Bases: CalculatedFieldABC, CalculatedFieldBaseModel

Baseflow separation using the Eckhardt method.

This class implements the Eckhardt filter method, which separates baseflow from quickflow using a timeseries of streamflow data. Adds a column to the joined timeseries table with the baseflow timeseries.

Properties#

  • value_time_field_name:

    The name of the column containing the timestamp. Default: “value_time”

  • value_field_name:

    The name of the column containing the value to separate baseflow from. Default: “primary_value”

  • output_field_name:

    The name of the column to store the baseflow separation result. Default: “eckhardt_baseflow”

  • beta:

    The filter parameter for the Lyne-Hollick filter method. Default: 0.925

  • a: float

    The recession coefficient for the Eckhardt filter method. If not provided, it will be estimated using the input timeseries data. Default: None

  • BFImax: float

    The maximum baseflow index for the Eckhardt filter method. If not provided, it will be estimated using the input timeseries data. Default: None

  • uniqueness_fields:

    The columns to use to uniquely identify each timeseries.

    Default: [
        'reference_time',
        'primary_location_id',
        'configuration_name',
        'variable_name',
        'unit_name'
    ]
    
copy(*, include: AbstractSetIntStr | MappingIntStrAny | None = None, exclude: AbstractSetIntStr | MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Self#

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Args:

include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

model_config: ClassVar[ConfigDict] = {'arbitrary_types_allowed': True, 'extra': 'forbid', 'validate_assignment': True}#

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Self#

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == ‘allow’, then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == ‘ignore’ (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == ‘forbid’ does not result in an error if extra values are passed, but they will be ignored.

Args:
_fields_set: A set of field names that were originally explicitly set during instantiation. If provided,

this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

values: Trusted or pre-validated data dictionary.

Returns:

A new instance of the Model class with validated data.

model_copy(*, update: Mapping[str, Any] | None = None, deep: bool = False) Self#
!!! abstract “Usage Documentation”

[model_copy](../concepts/serialization.md#model_copy)

Returns a copy of the model.

!!! note

The underlying instance’s [__dict__][object.__dict__] attribute is copied. This might have unexpected side effects if you store anything in it, on top of the model fields (e.g. the value of [cached properties][functools.cached_property]).

Args:
update: Values to change/add in the new model. Note: the data is not validated

before creating the new model. You should trust this data.

deep: Set to True to make a deep copy of the model.

Returns:

New model instance.

model_dump(*, mode: Literal['json', 'python'] | str = 'python', include: set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None = None, exclude: set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None = None, context: Any | None = None, by_alias: bool | None = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool | Literal['none', 'warn', 'error'] = True, fallback: Callable[[Any], Any] | None = None, serialize_as_any: bool = False) dict[str, Any]#
!!! abstract “Usage Documentation”

[model_dump](../concepts/serialization.md#modelmodel_dump)

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Args:
mode: The mode in which to_python should run.

If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.

include: A set of fields to include in the output. exclude: A set of fields to exclude from the output. context: Additional context to pass to the serializer. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: How to handle serialization errors. False/”none” ignores them, True/”warn” logs errors,

“error” raises a [PydanticSerializationError][pydantic_core.PydanticSerializationError].

fallback: A function to call when an unknown value is encountered. If not provided,

a [PydanticSerializationError][pydantic_core.PydanticSerializationError] error is raised.

serialize_as_any: Whether to serialize fields with duck-typing serialization behavior.

Returns:

A dictionary representation of the model.

model_dump_json(*, indent: int | None = None, include: set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None = None, exclude: set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None = None, context: Any | None = None, by_alias: bool | None = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool | Literal['none', 'warn', 'error'] = True, fallback: Callable[[Any], Any] | None = None, serialize_as_any: bool = False) str#
!!! abstract “Usage Documentation”

[model_dump_json](../concepts/serialization.md#modelmodel_dump_json)

Generates a JSON representation of the model using Pydantic’s to_json method.

Args:

indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. context: Additional context to pass to the serializer. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: How to handle serialization errors. False/”none” ignores them, True/”warn” logs errors,

“error” raises a [PydanticSerializationError][pydantic_core.PydanticSerializationError].

fallback: A function to call when an unknown value is encountered. If not provided,

a [PydanticSerializationError][pydantic_core.PydanticSerializationError] error is raised.

serialize_as_any: Whether to serialize fields with duck-typing serialization behavior.

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None#

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to “allow”.

property model_fields_set: set[str]#

Returns the set of fields that have been explicitly set on this model instance.

Returns:
A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias: bool = True, ref_template: str = '#/$defs/{model}', schema_generator: type[~pydantic.json_schema.GenerateJsonSchema] = <class 'pydantic.json_schema.GenerateJsonSchema'>, mode: ~typing.Literal['validation', 'serialization'] = 'validation') dict[str, Any]#

Generates a JSON schema for a model class.

Args:

by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of

GenerateJsonSchema with your desired modifications

mode: The mode in which to generate the schema.

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params: tuple[type[Any], ...]) str#

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Args:
params: Tuple of types of the class. Given a generic class

Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError: Raised when trying to generate concrete names for non-generic models.

model_post_init(context: Any, /) None#

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: MappingNamespace | None = None) bool | None#

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Args:

force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: Any | None = None, by_alias: bool | None = None, by_name: bool | None = None) Self#

Validate a pydantic model instance.

Args:

obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator. by_alias: Whether to use the field’s alias when validating against the provided input data. by_name: Whether to use the field’s name when validating against the provided input data.

Raises:

ValidationError: If the object could not be validated.

Returns:

The validated model instance.

classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: Any | None = None, by_alias: bool | None = None, by_name: bool | None = None) Self#
!!! abstract “Usage Documentation”

[JSON Parsing](../concepts/json.md#json-parsing)

Validate the given JSON data against the Pydantic model.

Args:

json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator. by_alias: Whether to use the field’s alias when validating against the provided input data. by_name: Whether to use the field’s name when validating against the provided input data.

Returns:

The validated Pydantic model.

Raises:

ValidationError: If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: Any | None = None, by_alias: bool | None = None, by_name: bool | None = None) Self#

Validate the given object with string data against the Pydantic model.

Args:

obj: The object containing string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator. by_alias: Whether to use the field’s alias when validating against the provided input data. by_name: Whether to use the field’s name when validating against the provided input data.

Returns:

The validated Pydantic model.

class FureyBaseflow(*, value_time_field_name: str = 'value_time', value_field_name: str = 'primary_value', output_field_name: str = 'furey_baseflow', beta: float = 0.925, a: float = None, c: float = None, uniqueness_fields: str | List[str] = None)#

Bases: CalculatedFieldABC, CalculatedFieldBaseModel

Baseflow separation using the Furey method.

This class implements the Furey digital filter method, which separates baseflow from quickflow using a timeseries of streamflow data. Adds a column to the joined timeseries table with the baseflow timeseries.

Properties#

  • value_time_field_name:

    The name of the column containing the timestamp. Default: “value_time”

  • value_field_name:

    The name of the column containing the value to separate baseflow from. Default: “primary_value”

  • output_field_name:

    The name of the column to store the baseflow separation result. Default: “furey_baseflow”

  • beta:

    The filter parameter for the Lyne-Hollick filter method. Default: 0.925

  • a: float

    The recession coefficient for the Furey filter method. If not provided, it will be estimated using the input timeseries data. Default: None

  • c: float

    The shape parameter for the Furey filter method. If not provided, it will be estimated using the input timeseries data. Default: None

  • uniqueness_fields:

    The columns to use to uniquely identify each timeseries.

    Default: [
        'reference_time',
        'primary_location_id',
        'configuration_name',
        'variable_name',
        'unit_name'
    ]
    
copy(*, include: AbstractSetIntStr | MappingIntStrAny | None = None, exclude: AbstractSetIntStr | MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Self#

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Args:

include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

model_config: ClassVar[ConfigDict] = {'arbitrary_types_allowed': True, 'extra': 'forbid', 'validate_assignment': True}#

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Self#

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == ‘allow’, then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == ‘ignore’ (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == ‘forbid’ does not result in an error if extra values are passed, but they will be ignored.

Args:
_fields_set: A set of field names that were originally explicitly set during instantiation. If provided,

this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

values: Trusted or pre-validated data dictionary.

Returns:

A new instance of the Model class with validated data.

model_copy(*, update: Mapping[str, Any] | None = None, deep: bool = False) Self#
!!! abstract “Usage Documentation”

[model_copy](../concepts/serialization.md#model_copy)

Returns a copy of the model.

!!! note

The underlying instance’s [__dict__][object.__dict__] attribute is copied. This might have unexpected side effects if you store anything in it, on top of the model fields (e.g. the value of [cached properties][functools.cached_property]).

Args:
update: Values to change/add in the new model. Note: the data is not validated

before creating the new model. You should trust this data.

deep: Set to True to make a deep copy of the model.

Returns:

New model instance.

model_dump(*, mode: Literal['json', 'python'] | str = 'python', include: set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None = None, exclude: set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None = None, context: Any | None = None, by_alias: bool | None = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool | Literal['none', 'warn', 'error'] = True, fallback: Callable[[Any], Any] | None = None, serialize_as_any: bool = False) dict[str, Any]#
!!! abstract “Usage Documentation”

[model_dump](../concepts/serialization.md#modelmodel_dump)

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Args:
mode: The mode in which to_python should run.

If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.

include: A set of fields to include in the output. exclude: A set of fields to exclude from the output. context: Additional context to pass to the serializer. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: How to handle serialization errors. False/”none” ignores them, True/”warn” logs errors,

“error” raises a [PydanticSerializationError][pydantic_core.PydanticSerializationError].

fallback: A function to call when an unknown value is encountered. If not provided,

a [PydanticSerializationError][pydantic_core.PydanticSerializationError] error is raised.

serialize_as_any: Whether to serialize fields with duck-typing serialization behavior.

Returns:

A dictionary representation of the model.

model_dump_json(*, indent: int | None = None, include: set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None = None, exclude: set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None = None, context: Any | None = None, by_alias: bool | None = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool | Literal['none', 'warn', 'error'] = True, fallback: Callable[[Any], Any] | None = None, serialize_as_any: bool = False) str#
!!! abstract “Usage Documentation”

[model_dump_json](../concepts/serialization.md#modelmodel_dump_json)

Generates a JSON representation of the model using Pydantic’s to_json method.

Args:

indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. context: Additional context to pass to the serializer. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: How to handle serialization errors. False/”none” ignores them, True/”warn” logs errors,

“error” raises a [PydanticSerializationError][pydantic_core.PydanticSerializationError].

fallback: A function to call when an unknown value is encountered. If not provided,

a [PydanticSerializationError][pydantic_core.PydanticSerializationError] error is raised.

serialize_as_any: Whether to serialize fields with duck-typing serialization behavior.

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None#

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to “allow”.

property model_fields_set: set[str]#

Returns the set of fields that have been explicitly set on this model instance.

Returns:
A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias: bool = True, ref_template: str = '#/$defs/{model}', schema_generator: type[~pydantic.json_schema.GenerateJsonSchema] = <class 'pydantic.json_schema.GenerateJsonSchema'>, mode: ~typing.Literal['validation', 'serialization'] = 'validation') dict[str, Any]#

Generates a JSON schema for a model class.

Args:

by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of

GenerateJsonSchema with your desired modifications

mode: The mode in which to generate the schema.

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params: tuple[type[Any], ...]) str#

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Args:
params: Tuple of types of the class. Given a generic class

Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError: Raised when trying to generate concrete names for non-generic models.

model_post_init(context: Any, /) None#

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: MappingNamespace | None = None) bool | None#

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Args:

force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: Any | None = None, by_alias: bool | None = None, by_name: bool | None = None) Self#

Validate a pydantic model instance.

Args:

obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator. by_alias: Whether to use the field’s alias when validating against the provided input data. by_name: Whether to use the field’s name when validating against the provided input data.

Raises:

ValidationError: If the object could not be validated.

Returns:

The validated model instance.

classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: Any | None = None, by_alias: bool | None = None, by_name: bool | None = None) Self#
!!! abstract “Usage Documentation”

[JSON Parsing](../concepts/json.md#json-parsing)

Validate the given JSON data against the Pydantic model.

Args:

json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator. by_alias: Whether to use the field’s alias when validating against the provided input data. by_name: Whether to use the field’s name when validating against the provided input data.

Returns:

The validated Pydantic model.

Raises:

ValidationError: If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: Any | None = None, by_alias: bool | None = None, by_name: bool | None = None) Self#

Validate the given object with string data against the Pydantic model.

Args:

obj: The object containing string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator. by_alias: Whether to use the field’s alias when validating against the provided input data. by_name: Whether to use the field’s name when validating against the provided input data.

Returns:

The validated Pydantic model.

class LyneHollickBaseflow(*, value_time_field_name: str = 'value_time', value_field_name: str = 'primary_value', output_field_name: str = 'lyne_hollick_baseflow', beta: float = 0.925, uniqueness_fields: str | List[str] = None)#

Bases: CalculatedFieldABC, CalculatedFieldBaseModel

Baseflow separation using the Lyne-Hollick method.

This class implements the Lyne-Hollick digital filter method, which separates baseflow from quickflow using a timeseries of streamflow data. Adds a column to the joined timeseries table with the baseflow timeseries.

Properties#

  • value_time_field_name:

    The name of the column containing the timestamp. Default: “value_time”

  • value_field_name:

    The name of the column containing the value to separate baseflow from. Default: “primary_value”

  • output_field_name:

    The name of the column to store the baseflow separation result. Default: “lyne_hollick_baseflow”

  • beta:

    The filter parameter for the Lyne-Hollick filter method. Default: 0.925

  • uniqueness_fields:

    The columns to use to uniquely identify each timeseries.

    Default: [
        'reference_time',
        'primary_location_id',
        'configuration_name',
        'variable_name',
        'unit_name'
    ]
    
copy(*, include: AbstractSetIntStr | MappingIntStrAny | None = None, exclude: AbstractSetIntStr | MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Self#

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Args:

include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

model_config: ClassVar[ConfigDict] = {'arbitrary_types_allowed': True, 'extra': 'forbid', 'validate_assignment': True}#

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Self#

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == ‘allow’, then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == ‘ignore’ (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == ‘forbid’ does not result in an error if extra values are passed, but they will be ignored.

Args:
_fields_set: A set of field names that were originally explicitly set during instantiation. If provided,

this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

values: Trusted or pre-validated data dictionary.

Returns:

A new instance of the Model class with validated data.

model_copy(*, update: Mapping[str, Any] | None = None, deep: bool = False) Self#
!!! abstract “Usage Documentation”

[model_copy](../concepts/serialization.md#model_copy)

Returns a copy of the model.

!!! note

The underlying instance’s [__dict__][object.__dict__] attribute is copied. This might have unexpected side effects if you store anything in it, on top of the model fields (e.g. the value of [cached properties][functools.cached_property]).

Args:
update: Values to change/add in the new model. Note: the data is not validated

before creating the new model. You should trust this data.

deep: Set to True to make a deep copy of the model.

Returns:

New model instance.

model_dump(*, mode: Literal['json', 'python'] | str = 'python', include: set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None = None, exclude: set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None = None, context: Any | None = None, by_alias: bool | None = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool | Literal['none', 'warn', 'error'] = True, fallback: Callable[[Any], Any] | None = None, serialize_as_any: bool = False) dict[str, Any]#
!!! abstract “Usage Documentation”

[model_dump](../concepts/serialization.md#modelmodel_dump)

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Args:
mode: The mode in which to_python should run.

If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.

include: A set of fields to include in the output. exclude: A set of fields to exclude from the output. context: Additional context to pass to the serializer. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: How to handle serialization errors. False/”none” ignores them, True/”warn” logs errors,

“error” raises a [PydanticSerializationError][pydantic_core.PydanticSerializationError].

fallback: A function to call when an unknown value is encountered. If not provided,

a [PydanticSerializationError][pydantic_core.PydanticSerializationError] error is raised.

serialize_as_any: Whether to serialize fields with duck-typing serialization behavior.

Returns:

A dictionary representation of the model.

model_dump_json(*, indent: int | None = None, include: set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None = None, exclude: set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None = None, context: Any | None = None, by_alias: bool | None = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool | Literal['none', 'warn', 'error'] = True, fallback: Callable[[Any], Any] | None = None, serialize_as_any: bool = False) str#
!!! abstract “Usage Documentation”

[model_dump_json](../concepts/serialization.md#modelmodel_dump_json)

Generates a JSON representation of the model using Pydantic’s to_json method.

Args:

indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. context: Additional context to pass to the serializer. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: How to handle serialization errors. False/”none” ignores them, True/”warn” logs errors,

“error” raises a [PydanticSerializationError][pydantic_core.PydanticSerializationError].

fallback: A function to call when an unknown value is encountered. If not provided,

a [PydanticSerializationError][pydantic_core.PydanticSerializationError] error is raised.

serialize_as_any: Whether to serialize fields with duck-typing serialization behavior.

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None#

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to “allow”.

property model_fields_set: set[str]#

Returns the set of fields that have been explicitly set on this model instance.

Returns:
A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias: bool = True, ref_template: str = '#/$defs/{model}', schema_generator: type[~pydantic.json_schema.GenerateJsonSchema] = <class 'pydantic.json_schema.GenerateJsonSchema'>, mode: ~typing.Literal['validation', 'serialization'] = 'validation') dict[str, Any]#

Generates a JSON schema for a model class.

Args:

by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of

GenerateJsonSchema with your desired modifications

mode: The mode in which to generate the schema.

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params: tuple[type[Any], ...]) str#

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Args:
params: Tuple of types of the class. Given a generic class

Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError: Raised when trying to generate concrete names for non-generic models.

model_post_init(context: Any, /) None#

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: MappingNamespace | None = None) bool | None#

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Args:

force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: Any | None = None, by_alias: bool | None = None, by_name: bool | None = None) Self#

Validate a pydantic model instance.

Args:

obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator. by_alias: Whether to use the field’s alias when validating against the provided input data. by_name: Whether to use the field’s name when validating against the provided input data.

Raises:

ValidationError: If the object could not be validated.

Returns:

The validated model instance.

classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: Any | None = None, by_alias: bool | None = None, by_name: bool | None = None) Self#
!!! abstract “Usage Documentation”

[JSON Parsing](../concepts/json.md#json-parsing)

Validate the given JSON data against the Pydantic model.

Args:

json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator. by_alias: Whether to use the field’s alias when validating against the provided input data. by_name: Whether to use the field’s name when validating against the provided input data.

Returns:

The validated Pydantic model.

Raises:

ValidationError: If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: Any | None = None, by_alias: bool | None = None, by_name: bool | None = None) Self#

Validate the given object with string data against the Pydantic model.

Args:

obj: The object containing string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator. by_alias: Whether to use the field’s alias when validating against the provided input data. by_name: Whether to use the field’s name when validating against the provided input data.

Returns:

The validated Pydantic model.

class PercentileEventDetection(*, quantile: float = 0.85, value_time_field_name: str = 'value_time', value_field_name: str = 'primary_value', output_event_field_name: str = 'event', output_event_id_field_name: str = 'event_id', uniqueness_fields: str | List[str] = None)#

Bases: CalculatedFieldABC, CalculatedFieldBaseModel

Adds an “event” and “event_id” column to the DataFrame based on a percentile threshold.

The “event” column (bool) indicates whether the value is above the XXth percentile. The “event_id” column (string) groups continuous segments of events and assigns a unique ID to each segment in the format “startdate-enddate”.

Properties#

  • quantile:

    The percentile threshold to use for event detection. Default: 0.85

  • value_time_field_name:

    The name of the column containing the timestamp. Default: “value_time”

  • value_field_name:

    The name of the column containing the value to detect events on. Default: “primary_value”

  • output_event_field_name:

    The name of the column to store the event detection. Default: “event”

  • output_event_id_field_name:

    The name of the column to store the event ID. Default: “event_id”

  • uniqueness_fields:

    The columns to use to uniquely identify each timeseries.

    Default: [
        'reference_time',
        'primary_location_id',
        'configuration_name',
        'variable_name',
        'unit_name'
    ]
    
copy(*, include: AbstractSetIntStr | MappingIntStrAny | None = None, exclude: AbstractSetIntStr | MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Self#

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Args:

include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

model_config: ClassVar[ConfigDict] = {'arbitrary_types_allowed': True, 'extra': 'forbid', 'validate_assignment': True}#

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Self#

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == ‘allow’, then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == ‘ignore’ (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == ‘forbid’ does not result in an error if extra values are passed, but they will be ignored.

Args:
_fields_set: A set of field names that were originally explicitly set during instantiation. If provided,

this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

values: Trusted or pre-validated data dictionary.

Returns:

A new instance of the Model class with validated data.

model_copy(*, update: Mapping[str, Any] | None = None, deep: bool = False) Self#
!!! abstract “Usage Documentation”

[model_copy](../concepts/serialization.md#model_copy)

Returns a copy of the model.

!!! note

The underlying instance’s [__dict__][object.__dict__] attribute is copied. This might have unexpected side effects if you store anything in it, on top of the model fields (e.g. the value of [cached properties][functools.cached_property]).

Args:
update: Values to change/add in the new model. Note: the data is not validated

before creating the new model. You should trust this data.

deep: Set to True to make a deep copy of the model.

Returns:

New model instance.

model_dump(*, mode: Literal['json', 'python'] | str = 'python', include: set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None = None, exclude: set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None = None, context: Any | None = None, by_alias: bool | None = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool | Literal['none', 'warn', 'error'] = True, fallback: Callable[[Any], Any] | None = None, serialize_as_any: bool = False) dict[str, Any]#
!!! abstract “Usage Documentation”

[model_dump](../concepts/serialization.md#modelmodel_dump)

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Args:
mode: The mode in which to_python should run.

If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.

include: A set of fields to include in the output. exclude: A set of fields to exclude from the output. context: Additional context to pass to the serializer. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: How to handle serialization errors. False/”none” ignores them, True/”warn” logs errors,

“error” raises a [PydanticSerializationError][pydantic_core.PydanticSerializationError].

fallback: A function to call when an unknown value is encountered. If not provided,

a [PydanticSerializationError][pydantic_core.PydanticSerializationError] error is raised.

serialize_as_any: Whether to serialize fields with duck-typing serialization behavior.

Returns:

A dictionary representation of the model.

model_dump_json(*, indent: int | None = None, include: set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None = None, exclude: set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None = None, context: Any | None = None, by_alias: bool | None = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool | Literal['none', 'warn', 'error'] = True, fallback: Callable[[Any], Any] | None = None, serialize_as_any: bool = False) str#
!!! abstract “Usage Documentation”

[model_dump_json](../concepts/serialization.md#modelmodel_dump_json)

Generates a JSON representation of the model using Pydantic’s to_json method.

Args:

indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. context: Additional context to pass to the serializer. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: How to handle serialization errors. False/”none” ignores them, True/”warn” logs errors,

“error” raises a [PydanticSerializationError][pydantic_core.PydanticSerializationError].

fallback: A function to call when an unknown value is encountered. If not provided,

a [PydanticSerializationError][pydantic_core.PydanticSerializationError] error is raised.

serialize_as_any: Whether to serialize fields with duck-typing serialization behavior.

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None#

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to “allow”.

property model_fields_set: set[str]#

Returns the set of fields that have been explicitly set on this model instance.

Returns:
A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias: bool = True, ref_template: str = '#/$defs/{model}', schema_generator: type[~pydantic.json_schema.GenerateJsonSchema] = <class 'pydantic.json_schema.GenerateJsonSchema'>, mode: ~typing.Literal['validation', 'serialization'] = 'validation') dict[str, Any]#

Generates a JSON schema for a model class.

Args:

by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of

GenerateJsonSchema with your desired modifications

mode: The mode in which to generate the schema.

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params: tuple[type[Any], ...]) str#

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Args:
params: Tuple of types of the class. Given a generic class

Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError: Raised when trying to generate concrete names for non-generic models.

model_post_init(context: Any, /) None#

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: MappingNamespace | None = None) bool | None#

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Args:

force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: Any | None = None, by_alias: bool | None = None, by_name: bool | None = None) Self#

Validate a pydantic model instance.

Args:

obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator. by_alias: Whether to use the field’s alias when validating against the provided input data. by_name: Whether to use the field’s name when validating against the provided input data.

Raises:

ValidationError: If the object could not be validated.

Returns:

The validated model instance.

classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: Any | None = None, by_alias: bool | None = None, by_name: bool | None = None) Self#
!!! abstract “Usage Documentation”

[JSON Parsing](../concepts/json.md#json-parsing)

Validate the given JSON data against the Pydantic model.

Args:

json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator. by_alias: Whether to use the field’s alias when validating against the provided input data. by_name: Whether to use the field’s name when validating against the provided input data.

Returns:

The validated Pydantic model.

Raises:

ValidationError: If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: Any | None = None, by_alias: bool | None = None, by_name: bool | None = None) Self#

Validate the given object with string data against the Pydantic model.

Args:

obj: The object containing string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator. by_alias: Whether to use the field’s alias when validating against the provided input data. by_name: Whether to use the field’s name when validating against the provided input data.

Returns:

The validated Pydantic model.

class UKIHBaseflow(*, value_time_field_name: str = 'value_time', value_field_name: str = 'primary_value', output_field_name: str = 'ukih_baseflow', beta: float = 0.925, uniqueness_fields: str | List[str] = None)#

Bases: CalculatedFieldABC, CalculatedFieldBaseModel

Baseflow separation using the UKIH method.

This class implements the United Kingdom Institute of Hydrology (UKIH) filter method (also referred to as the smoothed minima method), which separates baseflow from quickflow using a timeseries of streamflow data. Adds a column to the joined timeseries table with the baseflow timeseries.

Properties#

  • value_time_field_name:

    The name of the column containing the timestamp. Default: “value_time”

  • value_field_name:

    The name of the column containing the value to separate baseflow from. Default: “primary_value”

  • output_field_name:

    The name of the column to store the baseflow separation result. Default: “ukih_baseflow”

  • beta:

    The filter parameter for the Lyne-Hollick filter method. Default: 0.925

  • uniqueness_fields:

    The columns to use to uniquely identify each timeseries.

    Default: [
        'reference_time',
        'primary_location_id',
        'configuration_name',
        'variable_name',
        'unit_name'
    ]
    
copy(*, include: AbstractSetIntStr | MappingIntStrAny | None = None, exclude: AbstractSetIntStr | MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Self#

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Args:

include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

model_config: ClassVar[ConfigDict] = {'arbitrary_types_allowed': True, 'extra': 'forbid', 'validate_assignment': True}#

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Self#

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == ‘allow’, then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == ‘ignore’ (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == ‘forbid’ does not result in an error if extra values are passed, but they will be ignored.

Args:
_fields_set: A set of field names that were originally explicitly set during instantiation. If provided,

this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

values: Trusted or pre-validated data dictionary.

Returns:

A new instance of the Model class with validated data.

model_copy(*, update: Mapping[str, Any] | None = None, deep: bool = False) Self#
!!! abstract “Usage Documentation”

[model_copy](../concepts/serialization.md#model_copy)

Returns a copy of the model.

!!! note

The underlying instance’s [__dict__][object.__dict__] attribute is copied. This might have unexpected side effects if you store anything in it, on top of the model fields (e.g. the value of [cached properties][functools.cached_property]).

Args:
update: Values to change/add in the new model. Note: the data is not validated

before creating the new model. You should trust this data.

deep: Set to True to make a deep copy of the model.

Returns:

New model instance.

model_dump(*, mode: Literal['json', 'python'] | str = 'python', include: set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None = None, exclude: set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None = None, context: Any | None = None, by_alias: bool | None = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool | Literal['none', 'warn', 'error'] = True, fallback: Callable[[Any], Any] | None = None, serialize_as_any: bool = False) dict[str, Any]#
!!! abstract “Usage Documentation”

[model_dump](../concepts/serialization.md#modelmodel_dump)

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Args:
mode: The mode in which to_python should run.

If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.

include: A set of fields to include in the output. exclude: A set of fields to exclude from the output. context: Additional context to pass to the serializer. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: How to handle serialization errors. False/”none” ignores them, True/”warn” logs errors,

“error” raises a [PydanticSerializationError][pydantic_core.PydanticSerializationError].

fallback: A function to call when an unknown value is encountered. If not provided,

a [PydanticSerializationError][pydantic_core.PydanticSerializationError] error is raised.

serialize_as_any: Whether to serialize fields with duck-typing serialization behavior.

Returns:

A dictionary representation of the model.

model_dump_json(*, indent: int | None = None, include: set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None = None, exclude: set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None = None, context: Any | None = None, by_alias: bool | None = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool | Literal['none', 'warn', 'error'] = True, fallback: Callable[[Any], Any] | None = None, serialize_as_any: bool = False) str#
!!! abstract “Usage Documentation”

[model_dump_json](../concepts/serialization.md#modelmodel_dump_json)

Generates a JSON representation of the model using Pydantic’s to_json method.

Args:

indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. context: Additional context to pass to the serializer. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: How to handle serialization errors. False/”none” ignores them, True/”warn” logs errors,

“error” raises a [PydanticSerializationError][pydantic_core.PydanticSerializationError].

fallback: A function to call when an unknown value is encountered. If not provided,

a [PydanticSerializationError][pydantic_core.PydanticSerializationError] error is raised.

serialize_as_any: Whether to serialize fields with duck-typing serialization behavior.

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None#

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to “allow”.

property model_fields_set: set[str]#

Returns the set of fields that have been explicitly set on this model instance.

Returns:
A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias: bool = True, ref_template: str = '#/$defs/{model}', schema_generator: type[~pydantic.json_schema.GenerateJsonSchema] = <class 'pydantic.json_schema.GenerateJsonSchema'>, mode: ~typing.Literal['validation', 'serialization'] = 'validation') dict[str, Any]#

Generates a JSON schema for a model class.

Args:

by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of

GenerateJsonSchema with your desired modifications

mode: The mode in which to generate the schema.

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params: tuple[type[Any], ...]) str#

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Args:
params: Tuple of types of the class. Given a generic class

Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError: Raised when trying to generate concrete names for non-generic models.

model_post_init(context: Any, /) None#

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: MappingNamespace | None = None) bool | None#

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Args:

force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: Any | None = None, by_alias: bool | None = None, by_name: bool | None = None) Self#

Validate a pydantic model instance.

Args:

obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator. by_alias: Whether to use the field’s alias when validating against the provided input data. by_name: Whether to use the field’s name when validating against the provided input data.

Raises:

ValidationError: If the object could not be validated.

Returns:

The validated model instance.

classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: Any | None = None, by_alias: bool | None = None, by_name: bool | None = None) Self#
!!! abstract “Usage Documentation”

[JSON Parsing](../concepts/json.md#json-parsing)

Validate the given JSON data against the Pydantic model.

Args:

json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator. by_alias: Whether to use the field’s alias when validating against the provided input data. by_name: Whether to use the field’s name when validating against the provided input data.

Returns:

The validated Pydantic model.

Raises:

ValidationError: If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: Any | None = None, by_alias: bool | None = None, by_name: bool | None = None) Self#

Validate the given object with string data against the Pydantic model.

Args:

obj: The object containing string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator. by_alias: Whether to use the field’s alias when validating against the provided input data. by_name: Whether to use the field’s name when validating against the provided input data.

Returns:

The validated Pydantic model.

class WillemsBaseflow(*, value_time_field_name: str = 'value_time', value_field_name: str = 'primary_value', output_field_name: str = 'willems_baseflow', beta: float = 0.925, a: float = None, w: float = None, uniqueness_fields: str | List[str] = None)#

Bases: CalculatedFieldABC, CalculatedFieldBaseModel

Baseflow separation using the Willems method.

This class implements the Willems digital filter method, which separates baseflow from quickflow using a timeseries of streamflow data. Adds a column to the joined timeseries table with the baseflow timeseries.

Properties#

  • value_time_field_name:

    The name of the column containing the timestamp. Default: “value_time”

  • value_field_name:

    The name of the column containing the value to separate baseflow from. Default: “primary_value”

  • output_field_name:

    The name of the column to store the baseflow separation result. Default: “willems_baseflow”

  • beta:

    The filter parameter for the Lyne-Hollick filter method. Default: 0.925

  • a: float

    The recession coefficient for the Willems filter method. If not provided, it will be estimated using the input timeseries data. Default: None

  • w: float

    The case-specific average quickflow proportion of the streamflow used in the Willems filter method. If not provided, it will be estimated using the input timeseries data. Default: None

  • uniqueness_fields:

    The columns to use to uniquely identify each timeseries.

    Default: [
        'reference_time',
        'primary_location_id',
        'configuration_name',
        'variable_name',
        'unit_name'
    ]
    
copy(*, include: AbstractSetIntStr | MappingIntStrAny | None = None, exclude: AbstractSetIntStr | MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Self#

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Args:

include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

model_config: ClassVar[ConfigDict] = {'arbitrary_types_allowed': True, 'extra': 'forbid', 'validate_assignment': True}#

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Self#

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == ‘allow’, then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == ‘ignore’ (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == ‘forbid’ does not result in an error if extra values are passed, but they will be ignored.

Args:
_fields_set: A set of field names that were originally explicitly set during instantiation. If provided,

this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

values: Trusted or pre-validated data dictionary.

Returns:

A new instance of the Model class with validated data.

model_copy(*, update: Mapping[str, Any] | None = None, deep: bool = False) Self#
!!! abstract “Usage Documentation”

[model_copy](../concepts/serialization.md#model_copy)

Returns a copy of the model.

!!! note

The underlying instance’s [__dict__][object.__dict__] attribute is copied. This might have unexpected side effects if you store anything in it, on top of the model fields (e.g. the value of [cached properties][functools.cached_property]).

Args:
update: Values to change/add in the new model. Note: the data is not validated

before creating the new model. You should trust this data.

deep: Set to True to make a deep copy of the model.

Returns:

New model instance.

model_dump(*, mode: Literal['json', 'python'] | str = 'python', include: set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None = None, exclude: set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None = None, context: Any | None = None, by_alias: bool | None = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool | Literal['none', 'warn', 'error'] = True, fallback: Callable[[Any], Any] | None = None, serialize_as_any: bool = False) dict[str, Any]#
!!! abstract “Usage Documentation”

[model_dump](../concepts/serialization.md#modelmodel_dump)

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Args:
mode: The mode in which to_python should run.

If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.

include: A set of fields to include in the output. exclude: A set of fields to exclude from the output. context: Additional context to pass to the serializer. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: How to handle serialization errors. False/”none” ignores them, True/”warn” logs errors,

“error” raises a [PydanticSerializationError][pydantic_core.PydanticSerializationError].

fallback: A function to call when an unknown value is encountered. If not provided,

a [PydanticSerializationError][pydantic_core.PydanticSerializationError] error is raised.

serialize_as_any: Whether to serialize fields with duck-typing serialization behavior.

Returns:

A dictionary representation of the model.

model_dump_json(*, indent: int | None = None, include: set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None = None, exclude: set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None = None, context: Any | None = None, by_alias: bool | None = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool | Literal['none', 'warn', 'error'] = True, fallback: Callable[[Any], Any] | None = None, serialize_as_any: bool = False) str#
!!! abstract “Usage Documentation”

[model_dump_json](../concepts/serialization.md#modelmodel_dump_json)

Generates a JSON representation of the model using Pydantic’s to_json method.

Args:

indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. context: Additional context to pass to the serializer. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: How to handle serialization errors. False/”none” ignores them, True/”warn” logs errors,

“error” raises a [PydanticSerializationError][pydantic_core.PydanticSerializationError].

fallback: A function to call when an unknown value is encountered. If not provided,

a [PydanticSerializationError][pydantic_core.PydanticSerializationError] error is raised.

serialize_as_any: Whether to serialize fields with duck-typing serialization behavior.

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None#

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to “allow”.

property model_fields_set: set[str]#

Returns the set of fields that have been explicitly set on this model instance.

Returns:
A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias: bool = True, ref_template: str = '#/$defs/{model}', schema_generator: type[~pydantic.json_schema.GenerateJsonSchema] = <class 'pydantic.json_schema.GenerateJsonSchema'>, mode: ~typing.Literal['validation', 'serialization'] = 'validation') dict[str, Any]#

Generates a JSON schema for a model class.

Args:

by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of

GenerateJsonSchema with your desired modifications

mode: The mode in which to generate the schema.

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params: tuple[type[Any], ...]) str#

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Args:
params: Tuple of types of the class. Given a generic class

Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError: Raised when trying to generate concrete names for non-generic models.

model_post_init(context: Any, /) None#

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: MappingNamespace | None = None) bool | None#

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Args:

force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: Any | None = None, by_alias: bool | None = None, by_name: bool | None = None) Self#

Validate a pydantic model instance.

Args:

obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator. by_alias: Whether to use the field’s alias when validating against the provided input data. by_name: Whether to use the field’s name when validating against the provided input data.

Raises:

ValidationError: If the object could not be validated.

Returns:

The validated model instance.

classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: Any | None = None, by_alias: bool | None = None, by_name: bool | None = None) Self#
!!! abstract “Usage Documentation”

[JSON Parsing](../concepts/json.md#json-parsing)

Validate the given JSON data against the Pydantic model.

Args:

json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator. by_alias: Whether to use the field’s alias when validating against the provided input data. by_name: Whether to use the field’s name when validating against the provided input data.

Returns:

The validated Pydantic model.

Raises:

ValidationError: If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: Any | None = None, by_alias: bool | None = None, by_name: bool | None = None) Self#

Validate the given object with string data against the Pydantic model.

Args:

obj: The object containing string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator. by_alias: Whether to use the field’s alias when validating against the provided input data. by_name: Whether to use the field’s name when validating against the provided input data.

Returns:

The validated Pydantic model.