Source code for teehr.visualization.dataframe_accessor

"""Provides the teehr accessor extending pandas DataFrames."""
import itertools
from math import pi
import pandas as pd
import geopandas as gpd
import logging
from pathlib import Path
import pandera as pa

from bokeh.plotting import figure, save, output_file, show, ColumnDataSource
from bokeh.palettes import colorblind
import xyzservices.providers as xyz

import teehr.models.pandera_dataframe_schemas as schemas

logger = logging.getLogger(__name__)

LOCATION_TOOLS = "pan, wheel_zoom, box_zoom, reset"
TIMESERIES_TOOLS = "xwheel_zoom, box_zoom, reset"


[docs] @pd.api.extensions.register_dataframe_accessor("teehr") class TEEHRDataFrameAccessor: """Extends pandas DataFrame objects with visualization methods. Notes ----- This class contains example methods for summarizing and plotting metrics as well as timeseries. This requires more validation in each method to ensure the DataFrame has the appropriate data. Methods operating on metrics data should start with 'metrics' and methods operating on timeseries data should start with 'timeseries'. """ def __init__(self, pandas_obj): """Initialize the class.""" logger.info("Initializing new dataframe_accessor object...") if not (isinstance(pandas_obj, gpd.GeoDataFrame)): logger.info("Adding DataFrame to accessor object.") self._df = pandas_obj self._gdf = None self._validate(self=self, obj=pandas_obj) logger.info("Object validation successful.") else: logger.info("Adding GeoDataFrame to accessor object. ") self._df = None self._gdf = pandas_obj self._validate(self=self, obj=pandas_obj) logger.info("Object validation successful.") @staticmethod def _validate(self, obj): """Validate the DataFrame object.""" if 'table_type' not in obj.attrs: raise AttributeError( "No DataFrame Attribute 'table_type' defined." ) if obj.attrs['table_type'] == 'primary_timeseries': # validate using pandera schema schema = schemas.primary_timeseries_schema(type='pandas') try: schema.validate(obj) except pa.errors.SchemaError as exc: raise AttributeError( f"Pandera validation failed: {exc}" ) # check for data if obj.index.size == 0: raise AttributeError("DataFrame must have data.") elif obj.attrs['table_type'] == 'secondary_timeseries': # validate using pandera schema schema = schemas.secondary_timeseries_schema(type='pandas') try: schema.validate(obj) except pa.errors.SchemaError as exc: raise AttributeError( f"Pandera validation failed: {exc}" ) # check for data if obj.index.size == 0: raise AttributeError("DataFrame must have data.") elif obj.attrs['table_type'] == 'joined_timeseries': # TO-DO: add validation raise NotImplementedError( "Joined_timeseries methods must be implemented." ) elif obj.attrs['table_type'] == 'locations': # validate using pandera schema schema = schemas.locations_schema(type='pandas') try: schema.validate(obj) except pa.errors.SchemaError as exc: raise AttributeError( f"Pandera validation failed: {exc}" ) # check for data if obj.index.size == 0: raise AttributeError("GeoDataFrame must have data.") # convert to gdf if given df if not (isinstance(obj, gpd.GeoDataFrame)): raise NotImplementedError(f""" Locations mapping does not currently support input of type = {type(obj)}. Use to_geopandas() instead. """) # convert given crs to web mercator [EPSG:3857] target_crs = 'EPSG:3857' self._gdf.to_crs(target_crs, inplace=True) elif obj.attrs['table_type'] == 'location_attributes': # validate using pandera schema schema = schemas.location_attributes_schema(type='pandas') try: schema.validate(obj) except pa.errors.SchemaError as exc: raise AttributeError( f"Pandera validation failed: {exc}" ) # check for data if obj.index.size == 0: raise AttributeError("GeoDataFrame must have data.") # convert to gdf if given df (not implemented) if not (isinstance(obj, gpd.GeoDataFrame)): raise NotImplementedError(f""" Location attributes mapping does not currently support input of type = {type(obj)}. Use to_geopandas() instead. """) # convert given crs to web mercator [EPSG:3857] target_crs = 'EPSG:3857' self._gdf.to_crs(target_crs, inplace=True) elif obj.attrs['table_type'] == 'location_crosswalks': # validate using pandera schema schema = schemas.location_crosswalks_schema(type='pandas') try: schema.validate(obj) except pa.errors.SchemaError as exc: raise AttributeError( f"Pandera validation failed: {exc}" ) # check for data if obj.index.size == 0: raise AttributeError("GeoDataFrame must have data.") # convert to gdf if given df (not implemented) if not (isinstance(obj, gpd.GeoDataFrame)): raise NotImplementedError(f""" Location attributes mapping does not currently support input of type = {type(obj)}. Use to_geopandas() instead. """) # convert given crs to web mercator [EPSG:3857] target_crs = 'EPSG:3857' self._gdf.to_crs(target_crs, inplace=True) elif obj.attrs['table_type'] == 'metrics': # TO-DO: add validation raise NotImplementedError( "Metrics methods must be implemented." ) else: table_type_str = obj.attrs['table_type'] raise AttributeError(f""" Invalid table type:{table_type_str}. Visualization not supported. """) def _validate_path(self, output_dir): """Validate the output directory path.""" logger.info("Validating output directory path.") if not isinstance(output_dir, Path): logger.info(f""" Output directory must be a pathlib.Path object. Path was provided as type: {type(output_dir)}. Attempting to convert to pathlib.Path object. """) try: output_dir = Path(output_dir) logger.info("Path conversion successful.") except TypeError: logger.error("Path conversion failed.") # check for output location if output_dir is not None: if output_dir.exists(): logger.info("Specified save directory is valid.") else: logger.info("""" Specified directory does not exist. Creating new directory to store figure. """) try: Path(output_dir).mkdir(parents=True, exist_ok=True) except ValueError: logger.error("Directory creation failed.") return output_dir def _timeseries_unique_values( self, variable_df: pd.DataFrame, ) -> dict: """Get dictionary of all unique values of each column.""" logger.info("Retrieving unique values from DataFrame.") columns = variable_df.columns.to_list() unique_dict = {} for column in columns: unique_dict[column] = variable_df[column].unique().tolist() return unique_dict def _timeseries_schema(self) -> dict: """Get dictionary that defines plotting schema.""" logger.info("Retrieving default plotting schema.") unique_variables = self._df['variable_name'].unique().tolist() raw_schema = {} filtered_schema = {} # get all unique combinations (primary_timeseries) if self._df.attrs['table_type'] == 'primary_timeseries': for variable in unique_variables: variable_df = self._df[self._df['variable_name'] == variable] unique_column_vals = self._timeseries_unique_values( variable_df ) all_list = [ unique_column_vals['configuration_name'], unique_column_vals['location_id'], unique_column_vals['reference_time'] ] res = list(itertools.product(*all_list)) raw_schema[variable] = res # get all unique combinations (secondary_timeseries) else: for variable in unique_variables: variable_df = self._df[self._df['variable_name'] == variable] unique_column_vals = self._timeseries_unique_values( variable_df ) all_list = [ unique_column_vals['configuration_name'], unique_column_vals['location_id'], unique_column_vals['reference_time'], unique_column_vals['member'] ] res = list(itertools.product(*all_list)) raw_schema[variable] = res # primary timeseries filter routine (no data for combo) if self._df.attrs['table_type'] == 'primary_timeseries': for variable in unique_variables: valid_combos = [] invalid_combos_count = 0 var_df = self._df[self._df['variable_name'] == variable] for combo in raw_schema[variable]: # reference_time is null if pd.isnull(combo[2]): temp = var_df[ (var_df['configuration_name'] == combo[0]) & (var_df['location_id'] == combo[1]) & (var_df['reference_time'].isnull()) ] if not temp.empty: valid_combos.append(combo) else: invalid_combos_count += 1 # reference_time is not null else: temp = var_df[ (var_df['configuration_name'] == combo[0]) & (var_df['location_id'] == combo[1]) & (var_df['reference_time'] == combo[2]) ] if not temp.empty: valid_combos.append(combo) else: invalid_combos_count += 1 filtered_schema[variable] = valid_combos if invalid_combos_count > 0: logger.info(f""" Removed {invalid_combos_count} invalid combinations from the schema. """) # secondary timeseries filter routine (no data for combo) else: for variable in unique_variables: valid_combos = [] invalid_combos_count = 0 var_df = self._df[self._df['variable_name'] == variable] for combo in raw_schema[variable]: # reference_time is null, member is null if (pd.isnull(combo[2]) and pd.isnull(combo[3])): temp = var_df[ (var_df['configuration_name'] == combo[0]) & (var_df['location_id'] == combo[1]) & (var_df['reference_time'].isnull()) & (var_df['member'].isnull()) ] if not temp.empty: valid_combos.append(combo) else: invalid_combos_count += 1 # reference_time is null, member is not null elif (pd.isnull(combo[2]) and not pd.isnull(combo[3])): temp = var_df[ (var_df['configuration_name'] == combo[0]) & (var_df['location_id'] == combo[1]) & (var_df['reference_time'].isnull()) & (var_df['member'] == combo[3]) ] if not temp.empty: valid_combos.append(combo) else: invalid_combos_count += 1 # reference_time is not null, member is null elif (not pd.isnull(combo[2]) and pd.isnull(combo[3])): temp = var_df[ (var_df['configuration_name'] == combo[0]) & (var_df['location_id'] == combo[1]) & (var_df['reference_time'] == combo[2]) & (var_df['member'].isnull()) ] if not temp.empty: valid_combos.append(combo) else: invalid_combos_count += 1 # reference_time is not null, member is not null else: temp = var_df[ (var_df['configuration_name'] == combo[0]) & (var_df['location_id'] == combo[1]) & (var_df['reference_time'] == combo[2]) & (var_df['member'] == combo[3]) ] if not temp.empty: valid_combos.append(combo) else: invalid_combos_count += 1 filtered_schema[variable] = valid_combos if invalid_combos_count > 0: logger.info(f""" Removed {invalid_combos_count} invalid combinations from the schema. """) logger.info("Schema filtering complete.") return filtered_schema def _timeseries_format_plot( self, plot: figure, ) -> figure: """Format timeseries plot.""" # x-axis plot.xaxis.major_label_orientation = pi/4 plot.xaxis.axis_label_text_font_style = 'bold' # y-axis plot.yaxis.axis_label_text_font_style = 'bold' # title plot.title.text_font_size = '12pt' # legend plot.legend.location = 'top_right' plot.legend.border_line_width = 1 plot.legend.border_line_color = 'black' plot.legend.border_line_alpha = 1.0 plot.legend.background_fill_color = 'white' plot.legend.background_fill_alpha = 1.0 plot.legend.click_policy = 'hide' # tools plot.sizing_mode = 'stretch_width' plot.toolbar.autohide = True return plot def _timeseries_generate_plot( self, schema: dict, df: pd.DataFrame, variable: str, output_dir: None, ) -> figure: """Generate a single timeseries plot.""" logger.info("Generating timeseries plot.") # generate plot unique_units = df['unit_name'].unique().tolist() palette = itertools.cycle(colorblind['Colorblind'][8]) p = figure( title="Click legend entry to toggle display of timeseries", y_axis_label=f"{variable} [{unique_units[0]}]", x_axis_label="Datetime", x_axis_type='datetime', tools=TIMESERIES_TOOLS, height=800 ) # add data to plot (primary timeseries) if self._df.attrs['table_type'] == 'primary_timeseries': for combo in schema[variable]: # reference_time is null if pd.isnull(combo[2]): logger.info(f"Processing combination: {combo}") logger.info(f""" reference_time == NaT, ignoring reference_time for combo: {combo} """) temp = df[ (df['configuration_name'] == combo[0]) & (df['location_id'] == combo[1]) & (df['reference_time'].isnull()) ] if not temp.empty: logger.info(f"Plotting data for combination: {combo}") p.line( temp.value_time, temp.value, legend_label=f"{combo[0]} - {combo[1]}", line_width=1, color=next(palette) ) else: logger.warning(f"No data for combination: {combo}") # reference_time is not null else: logger.info(f"Processing combination: {combo}") temp = df[ (df['configuration_name'] == combo[0]) & (df['location_id'] == combo[1]) & (df['reference_time'] == combo[2]) ] if not temp.empty: logger.info(f"Plotting data for combination: {combo}") label = f"{combo[0]} - {combo[1]} - {combo[2]}" p.line( temp.value_time, temp.value, legend_label=f"{label}", line_width=1, color=next(palette) ) else: logger.warning(f"No data for combination: {combo}") # add data to plot (secondary timeseries) else: for combo in schema[variable]: # reference_time is null, member is null if (pd.isnull(combo[2]) and pd.isnull(combo[3])): logger.info(f"Processing combination: {combo}") logger.info(f""" reference_time == NaT and member == None, ignoring reference_time and member for combo: {combo} """) temp = df[ (df['configuration_name'] == combo[0]) & (df['location_id'] == combo[1]) & (df['reference_time'].isnull()) & (df['member'].isnull()) ] if not temp.empty: logger.info(f"Plotting data for combination: {combo}") p.line( temp.value_time, temp.value, legend_label=f"{combo[0]} - {combo[1]}", line_width=1, color=next(palette) ) else: logger.warning(f"No data for combination: {combo}") # reference_time is null, member is not null elif (pd.isnull(combo[2]) and not pd.isnull(combo[3])): logger.info(f"Processing combination: {combo}") logger.info(f""" reference_time == NaT, ignoring reference_time for combo: {combo} """) temp = df[ (df['configuration_name'] == combo[0]) & (df['location_id'] == combo[1]) & (df['reference_time'].isnull()) & (df['member'] == combo[3]) ] if not temp.empty: logger.info(f"Plotting data for combination: {combo}") label = f"{combo[0]} - {combo[1]} - {combo[3]}" p.line( temp.value_time, temp.value, legend_label=f"{label}", line_width=1, color=next(palette) ) else: logger.warning(f"No data for combination: {combo}") # reference_time is not null, member is null elif (not pd.isnull(combo[2]) and pd.isnull(combo[3])): logger.info(f"Processing combination: {combo}") logger.info(f""" member == None, ignoring member for combo: {combo} """) temp = df[ (df['configuration_name'] == combo[0]) & (df['location_id'] == combo[1]) & (df['reference_time'] == combo[2]) & (df['member'].isnull()) ] if not temp.empty: logger.info(f"Plotting data for combination: {combo}") label = f"{combo[0]} - {combo[1]} - {combo[2]}" p.line( temp.value_time, temp.value, legend_label=f"{label}", line_width=1, color=next(palette) ) else: logger.warning(f"No data for combination: {combo}") # reference_time is not null, member is not null else: logger.info(f"Processing combination: {combo}") temp = df[ (df['configuration_name'] == combo[0]) & (df['location_id'] == combo[1]) & (df['reference_time'] == combo[2]) & (df['member'] == combo[3]) ] if not temp.empty: logger.info(f"Plotting data for combination: {combo}") label = f"{combo[0]} - {combo[1]} - {combo[2]} - \ {combo[3]}" p.line( temp.value_time, temp.value, legend_label=f"{label}", line_width=1, color=next(palette) ) else: logger.warning(f"No data for combination: {combo}") # format plot p = self._timeseries_format_plot(plot=p) # output figure (primary timeseries) if self._df.attrs['table_type'] == 'primary_timeseries': if output_dir: fname = Path( output_dir, f'primary_timeseries_plot_{variable}.html' ) output_file( filename=fname, title=f'Primary Timeseries Plot [{variable}]', mode='inline' ) logger.info(f"Saving primary timeseries plot at {output_dir}") save(p) logger.info(f"Primary Timeseries plot saved at {fname}") else: logger.info("No output directory specified, displaying plot.") show(p) logger.info("Primary Timeseries plot displayed.") # output figure (secondary timeseries) else: if output_dir: fname = Path( output_dir, f'secondary_timeseries_plot_{variable}.html' ) output_file( filename=fname, title=f'Secondary Timeseries Plot [{variable}]', mode='inline' ) logger.info( f"Saving secondary timeseries plot at {output_dir}" ) save(p) logger.info(f"Secondary Timeseries plot saved at {fname}") else: logger.info("No output directory specified, displaying plot.") show(p) logger.info("Secondary Timeseries plot displayed.") return
[docs] def timeseries_plot(self, output_dir=None): """ Generate and save TS plots for each unique variable in theDataFrame. This method generates timeseries plots for each unique variable in the DataFrame's 'variable_name' column. The plots are saved to the specified output directory if provided. If the output directory does not exist, it will be created. Parameters ---------- output_dir : pathlib.Path or None, optional The directory where the plots will be saved. If None, the plots will be displayed interactively. Default is None. Returns ------- None Notes ----- This method calls ``_timeseries_schema`` to get the plotting schema and ``_timeseries_generate_plot`` to generate each plot. It ensures the output directory exists before saving the plots. """ # check table type if (self._df.attrs['table_type'] != 'primary_timeseries' and self._df.attrs['table_type'] != 'secondary_timeseries'): table_type_str = self.attrs['table_type'] raise AttributeError(f""" Expected table_type == "primary_timeseries" or "secondary_timeseries", got table_type = {table_type_str} """) # validate output location output_dir = self._validate_path(output_dir) # generate plots schema = self._timeseries_schema() for variable in schema.keys(): df_variable = self._df[self._df['variable_name'] == variable] self._timeseries_generate_plot( schema=schema, df=df_variable, variable=variable, output_dir=output_dir )
def _location_format_points(self) -> dict: """Generate dictionary for point plotting.""" logger.info("Assembling geodata for locations mapping...") geo_data = {} geo_data['id'] = self._gdf['id'].tolist() geo_data['name'] = self._gdf['name'].tolist() geo_data['x'] = self._gdf.geometry.x.values.tolist() geo_data['y'] = self._gdf.geometry.y.values.tolist() logger.info("Locations geodata assembled.") return geo_data def _location_get_bounds( self, geo_data: dict ) -> dict: """Determine axes ranges using point data.""" logger.info("Retrieving axes ranges from geodata.") min_x = min(geo_data['x']) max_x = max(geo_data['x']) min_y = min(geo_data['y']) max_y = max(geo_data['y']) x_buffer = abs((max_x - min_x)*0.1) y_buffer = abs((max_y - min_y)*0.1) axes_bounds = {} axes_bounds['x_space'] = ((min_x - x_buffer), (max_x + x_buffer)) axes_bounds['y_space'] = ((min_y - y_buffer), (max_y + y_buffer)) return axes_bounds def _location_generate_map( self, geo_data: dict, output_dir: None ) -> figure: """Generate location map.""" logger.info("Generating location map.") # set tooltips tooltips = [ ("id", "@id"), ("name", "@name") ] # get axes bounds axes_bounds = self._location_get_bounds(geo_data=geo_data) # generate basemap p = figure( x_range=axes_bounds['x_space'], y_range=axes_bounds['y_space'], x_axis_type="mercator", y_axis_type="mercator", tooltips=tooltips, tools=LOCATION_TOOLS ) p.add_tile(xyz.OpenStreetMap.Mapnik) # add data source = ColumnDataSource(data=geo_data) p.scatter( x='x', y='y', color='blue', source=source, size=10, fill_alpha=1.0 ) # output figure if output_dir: fname = Path(output_dir, 'location_map.html') output_file(filename=fname, title='Location Map', mode='inline') logger.info(f"Saving location map at {output_dir}") save(p) logger.info(f"Location map saved at {fname}") else: logger.info("No output directory specified, displaying plot.") show(p) logger.info("Location map displayed.") return
[docs] def locations_map(self, output_dir=None): """ Generate a location map and save it to the specified directory. Parameters ---------- output_dir : str or Path, optional The directory where the generated map will be saved. If not provided, the map will not be saved. If the directory does not exist, it will be created. Raises ------ AttributeError If the table type is not 'locations'. Notes ----- This function checks the table type to ensure it is 'locations'. If an output directory is specified, it checks if the directory exists and creates it if it does not. The function then formats the location points and generates the map, saving it to the specified directory if provided. """ # check table type if self._gdf.attrs['table_type'] != 'locations': table_type_str = self.attrs['table_type'] raise AttributeError(f""" Expected table_type == "locations", got table_type = {table_type_str} """) # validate output location output_dir = self._validate_path(output_dir) geo_data = self._location_format_points() # generate map self._location_generate_map(geo_data=geo_data, output_dir=output_dir)
def _location_attributes_format_points(self) -> dict: """Format location_attributes data for use in mapping method.""" logger.info("Assembling geodata for location attributes mapping...") geo_data = {} locations = self._gdf['location_id'].unique() for location in locations: local_attributes = {} location_gdf = self._gdf[self._gdf['location_id'] == location] attributes = location_gdf['attribute_name'].unique() for attribute in attributes: row = location_gdf[location_gdf['attribute_name'] == attribute] local_attributes[attribute] = row['value'].values[0] if attribute == attributes[-1]: local_attributes['x'] = row.geometry.x.values[0] local_attributes['y'] = row.geometry.y.values[0] local_attributes['location_id'] = location geo_data[location] = local_attributes logger.info("Location attributes geodata assembled.") logger.info("Checking for duplicate attributes...") self._location_attributes_check_duplicates(geo_data=geo_data) return geo_data def _location_attributes_check_duplicates( self, geo_data: dict ): """Check for duplicate attributes.""" for location in geo_data.keys(): location_data = self._gdf[self._gdf['location_id'] == location] attribute_counts = location_data['attribute_name'].value_counts() for i in range(len(attribute_counts)): attribute_val = attribute_counts.iloc[i] attribute_name = attribute_counts.index[i] if attribute_val > 1: logger.warning(f""" Location = {location} has multiple entries for attribute = {attribute_name}. Remove duplicates to avoid unintended results. """) def _location_attributes_get_tooltips( self, geo_data: dict ) -> list: """Dynamically create tooltips for location_attributes.""" # extract attributes from geo_data all_attributes = [] for location in geo_data.keys(): attributes = geo_data[location] for attribute in attributes.keys(): all_attributes.append(attribute) # remove duplicates and x/y unique_attributes = list(set(all_attributes)) unique_attributes.remove('x') unique_attributes.remove('y') # format tuples for tooltips tooltips = [] for attribute in unique_attributes: entry = (f"{attribute}", f"@{attribute}") tooltips.append(entry) return tooltips def _location_attributes_get_bounds( self, geo_data: dict ) -> dict: """Obtain axes bounds for location_attributes mapping.""" x_list = [] y_list = [] for location in geo_data.keys(): attributes = geo_data[location] x_list.append(attributes['x']) y_list.append(attributes['y']) min_x = min(x_list) max_x = max(x_list) min_y = min(y_list) max_y = max(y_list) x_buffer = abs((max_x - min_x)*0.1) y_buffer = abs((max_y - min_y)*0.1) axes_bounds = {} axes_bounds['x_space'] = ((min_x - x_buffer), (max_x + x_buffer)) axes_bounds['y_space'] = ((min_y - y_buffer), (max_y + y_buffer)) return axes_bounds def _location_attributes_make_iterable(self, geo_data) -> dict: """Make values iterable for plotting.""" for key, value in geo_data.items(): if not isinstance(value, (list, tuple, set)): geo_data[key] = [value] return geo_data def _location_attributes_generate_map( self, geo_data: dict, output_dir=None ) -> figure: """Generate map for location_attributes table.""" logger.info("Generating location attributes map...") # set tooltips tooltips = self._location_attributes_get_tooltips(geo_data=geo_data) # get axes bounds axes_bounds = self._location_attributes_get_bounds(geo_data=geo_data) # generate basemap p = figure( x_range=axes_bounds['x_space'], y_range=axes_bounds['y_space'], x_axis_type="mercator", y_axis_type="mercator", tooltips=tooltips, tools=LOCATION_TOOLS ) p.add_tile(xyz.OpenStreetMap.Mapnik) # add data per location for location in geo_data.keys(): location_dict = self._location_attributes_make_iterable( geo_data[location] ) source = ColumnDataSource(location_dict) p.scatter( x='x', y='y', color='blue', source=source, size=10, fill_alpha=1.0 ) # output figure if output_dir: fname = Path(output_dir, 'location_attributes_map.html') output_file( filename=fname, title='Location Attributes Map', mode='inline' ) logger.info(f"Saving location attributes map at {output_dir}") save(p) logger.info(f"Location attributes map at {fname}") else: logger.info("No output directory specified, displaying plot.") show(p) logger.info("Location attributes map displayed.") return
[docs] def location_attributes_map(self, output_dir=None): """Generate location_attributes table map. Generate a map of location attributes and save it to the specified directory. This function checks the table type to ensure it is 'location_attributes'. If an output directory is specified, it checks if the directory exists and creates it if it does not. It then formats the point data and generates the map. Parameters ---------- output_dir : Path or None, optional The directory where the generated map will be saved. If None, the map will not be saved to a file. Default is None. Raises ------ AttributeError If the table type is not 'location_attributes'. Notes ----- This function relies on the following methods: - ``_location_attributes_format_points``: Formats the point data. - ``_location_attributes_generate_map``: Generates the map using the formatted data. Examples -------- >>> obj = YourClass() >>> obj.location_attributes_map(output_dir=Path('/path/to/save')) """ # check table type if self._gdf.attrs['table_type'] != 'location_attributes': table_type_str = self.attrs['table_type'] raise AttributeError(f""" Expected table_type == "location_attributes", got table_type = {table_type_str} """) # validate output location output_dir = self._validate_path(output_dir) # format point data geo_data = self._location_attributes_format_points() # generate map self._location_attributes_generate_map( geo_data=geo_data, output_dir=output_dir )
def _location_crosswalks_format_points(self) -> dict: """Generate dictionary for point plotting.""" logger.info("Assembling geodata for location_crosswalks mapping...") geo_data = {} geo_data['primary_id'] = self._gdf['primary_location_id'].tolist() geo_data['secondary_id'] = self._gdf['secondary_location_id'].tolist() geo_data['x'] = self._gdf.geometry.x.values.tolist() geo_data['y'] = self._gdf.geometry.y.values.tolist() logger.info("location_crosswalks geodata assembled.") return geo_data def _location_crosswalks_generate_map( self, geo_data: dict, output_dir=None ) -> figure: """Generate map for location_crosswalks table.""" logger.info("Generating location_crosswalks map...") # set tooltips tooltips = [ ("primary_location_id", "@primary_id"), ("secondary_location_id", "@secondary_id") ] # get axes bounds axes_bounds = self._location_get_bounds(geo_data=geo_data) # generate basemap p = figure( x_range=axes_bounds['x_space'], y_range=axes_bounds['y_space'], x_axis_type="mercator", y_axis_type="mercator", tooltips=tooltips, tools=LOCATION_TOOLS ) p.add_tile(xyz.OpenStreetMap.Mapnik) # add data source = ColumnDataSource(data=geo_data) p.scatter( x='x', y='y', color='blue', source=source, size=10, fill_alpha=1.0 ) # output figure if output_dir: fname = Path(output_dir, 'location_crosswalks_map.html') output_file( filename=fname, title='Location Crosswalks Map', mode='inline' ) logger.info(f"Saving location crosswalks map at {output_dir}") save(p) logger.info(f"Location crosswalks map saved at {fname}") else: logger.info("No output directory specified, displaying plot.") show(p) logger.info("Location crosswalks map displayed.") return
[docs] def location_crosswalks_map(self, output_dir=None): """Generate location_crosswalks table map. Generate a map of location crosswalks and save it to the specified directory. This method checks the table type to ensure it is 'location_crosswalks'. If an output directory is specified, it checks if the directory exists and creates it if it does not. It then assembles the point data and generates the map. Parameters ---------- output_dir : Path or None, optional The directory where the generated map will be saved. If None, the map will not be saved to a file. Default is None. Raises ------ AttributeError If the table type is not 'location_crosswalks'. Notes ----- This method relies on the following methods: - ``_location_crosswalks_format_points``: Assembles the point data. - ``_location_crosswalks_generate_map``: Generates the map using the assembled data. Examples -------- >>> obj = YourClass() >>> obj.location_crosswalks_map(output_dir=Path('/path/to/save')) """ # check table type if self._gdf.attrs['table_type'] != 'location_crosswalks': table_type_str = self.attrs['table_type'] raise AttributeError(f""" Expected table_type == "location_crosswalks", got table_type = {table_type_str} """) # validate output location output_dir = self._validate_path(output_dir) # assemble data geo_data = self._location_crosswalks_format_points() # generate map self._location_crosswalks_generate_map( geo_data=geo_data, output_dir=output_dir )